244,300 research outputs found

    Advanced Tools and Technologies for Collaborative Product Development and Knowledge Management

    Get PDF
    The shortcomings of the current state-of-the-art in distributed / collaborative product development of engineering products from concept to production are: A lack of an integrated interface for the full spectrum of functions needed by complex conceptual design for manufacture and assembly; and management and re-use of concept design knowledge within an integrated design environment. Recommendations are given on the integration of these disparate technologies for the benefit of collaborative work teams to enable them to use a seamlessly integrated interface to develop, review, analyse and reuse engineering and manufacturing knowledge and models within the enterprise and the supply chain. A proposed methodology and a functional description of such a system is presented. The system utilises the Protégé-2000 expert system on top of the Windchill data management / collaboration software. International Standard for the Exchange of Product model data – STEP is to be used for machining feature definition

    A collaborative platform for integrating and optimising Computational Fluid Dynamics analysis requests

    Get PDF
    A Virtual Integration Platform (VIP) is described which provides support for the integration of Computer-Aided Design (CAD) and Computational Fluid Dynamics (CFD) analysis tools into an environment that supports the use of these tools in a distributed collaborative manner. The VIP has evolved through previous EU research conducted within the VRShips-ROPAX 2000 (VRShips) project and the current version discussed here was developed predominantly within the VIRTUE project but also within the SAFEDOR project. The VIP is described with respect to the support it provides to designers and analysts in coordinating and optimising CFD analysis requests. Two case studies are provided that illustrate the application of the VIP within HSVA: the use of a panel code for the evaluation of geometry variations in order to improve propeller efficiency; and, the use of a dedicated maritime RANS code (FreSCo) to improve the wake distribution for the VIRTUE tanker. A discussion is included detailing the background, application and results from the use of the VIP within these two case studies as well as how the platform was of benefit during the development and a consideration of how it can benefit HSVA in the future

    A metric to represent the evolution of CAD/analysis models in collaborative design

    Get PDF
    Computer Aided Design (CAD) and Computer Aided Engineering (CAE) models are often used during product design. Various interactions between the different models must be managed for the designed system to be robust and in accordance with initially defined specifications. Research published to date has for example considered the link between digital mock-up and analysis models. However design/analysis integration must take into consideration the important number of models (digital mock-up and simulation) due to model evolution in time, as well as considering system engineering. To effectively manage modifications made to the system, the dependencies between the different models must be known and the nature of the modification must be characterised to estimate the impact of the modification throughout the dependent models. We propose a technique to describe the nature of a modification which may be used to determine the consequence within other models as well as a way to qualify the modified information. To achieve this, a metric is proposed that allows the qualification and evaluation of data or information, based on the maturity and validity of information and model

    An integrated new product development model for the Turkish electronics industry

    Get PDF
    The aim of this study is to report on an integrated model of new product development (NPD) and the analysis of factors, which have a significant effect on new product development success. First, an integrated NPD model based on past research findings and suggestions of several researchers is built. A three-step model is constructed and is tested through a series of statistical tests and analysis. The data for the testing of the model is provided by an empirical study conducted in the Turkish electronics industry. Some practices for successful NPD are suggested

    Designing and Integrating a Digital Thread System for Customized Additive Manufacturing in Multi-Partner Kayak Production

    Get PDF
    Additive manufacturing (AM) opens the vision of decentralised and individualised manufacturing, as a tailored product can be manufactured in proximity to the customers with minimal physical infrastructure required. Consequently, the digital infrastructure and systems solution becomes substantially more complex. There is always a need to design the entire digital system so that different partners (or stakeholders) access correct and relevant information and even support design iterations despite the heterogenous digital environments involved. This paper describes how the design and integration of a digital thread for AM can be approached. A system supporting a digital thread for AM kayak production has been designed and integrated in collaboration with a kayak manufacturer and a professional collaborative product lifecycle management (PLM) software and service provider. From the demonstrated system functionality, three key lessons learnt are clarified: (1) The need for developing a process model of the physical and digital flow in the early stages, (2) the separation between the data to be shared and the processing of data to perform each parties\u27 task, and (3) the development of an ad-hoc digital application for the involvement of new stakeholders in the AM digital flow, such as final users. The application of the digital thread system was demonstrated through a test of the overall concept by manufacturing a functional and individually customised kayak, printed remotely using AM (composed of a biocomposite containing 20% wood-based fibre)

    Information technology as boundary object for transformational learning

    Get PDF
    Collaborative work is considered as a way to improve productivity and value generation in construction. However, recent research demonstrates that socio-cognitive factors related to fragmentation of specialized knowledge may hinder team performance. New methods based on theories of practice are emerging in Computer Supported Collaborative Work and organisational learning to break these knowledge boundaries, facilitating knowledge sharing and the generation of new knowledge through transformational learning. According to these theories, objects used in professional practice play a key role in mediating interactions. Rules and methods related to these practices are also embedded in these objects. Therefore changing collaborative patterns demand reconfiguring objects that are at the boundary between specialized practices, namely boundary objects. This research is unique in presenting an IT strategy in which technology is used as a boundary object to facilitate transformational learning in collaborative design work

    Development of a project level performance measurement model for improving collaborative design team work

    Get PDF
    This research explored a new direction of improving collaborative design by performance measurement. More specifically, a novel 3-dimensional performance measurement model is developed and the purpose of this model is to help project managers improve team collaboration by indicating strengths and weaknesses of team members during the project development process. Considering the complexity of collaborative design work, a multiple criteria model is proposed to reflect the design dynamics, which highlights five performance indicators: efficiency, effectiveness, collaboration, management skills and innovation. These five indicators are mostly influenced by role-based performance measurement criteria (the second dimension). Design and development process (time) is also considered (the third dimension). This 3D model allows all involved design participants to measure work performance at any time during the product development process. In order to develop this model, the role-based task analysis and industrial survey methods were utilized. Three groups of role-based product design and development performance measurement criteria were identified for measuring design performance of the top managers, middle managers and individual designers in a project team. A 3-dimensional performance measurement method was proposed to calculate final performance scores from a performance measurement matrix. The proposed model was evaluated as a tool which can support project managers to reduce potential design and collaboration risks and increase confidence in decision-making process. The model has been discussed on implementing in a web-based application for measuring design performance throughout the product design and development proces
    • …
    corecore