3 research outputs found

    An Order Insertion Scheduling Model of Logistics Service Supply Chain Considering Capacity and Time Factors

    Get PDF
    Order insertion often occurs in the scheduling process of logistics service supply chain (LSSC), which disturbs normal time scheduling especially in the environment of mass customization logistics service. This study analyses order similarity coefficient and order insertion operation process and then establishes an order insertion scheduling model of LSSC with service capacity and time factors considered. This model aims to minimize the average unit volume operation cost of logistics service integrator and maximize the average satisfaction degree of functional logistics service providers. In order to verify the viability and effectiveness of our model, a specific example is numerically analyzed. Some interesting conclusions are obtained. First, along with the increase of completion time delay coefficient permitted by customers, the possible inserting order volume first increases and then trends to be stable. Second, supply chain performance reaches the best when the volume of inserting order is equal to the surplus volume of the normal operation capacity in mass service process. Third, the larger the normal operation capacity in mass service process is, the bigger the possible inserting order’s volume will be. Moreover, compared to increasing the completion time delay coefficient, improving the normal operation capacity of mass service process is more useful

    Revenue-Sharing Contract Models for Logistics Service Supply Chains with Mass Customization Service

    Get PDF
    The revenue-sharing contract is one of the most important supply chain coordination contracts; it has been applied in various supply chains. However, studies related to service supply chains with mass customization (MC) are lacking. Considering the equity of benefit distribution between the members of service supply chains, in this paper, we designed two revenue-sharing contracts. The first contract for the maximum equity of a single logistics service integrator (LSI) and single functional logistics service provider (FLSP) in a two-echelon logistics service supply chain was designed by introducing the fair entropy function (“one to one” model). Furthermore, the method is extended to a more complex supply chain, which consists of a single LSI and multiple FLSPs. A new contract was designed not only for considering the equity of an LSI and each FLSP but also for the equity between each FLSP (“one to N” model). The “one to one” model in three-echelon LSSC is also provided. The result exemplifies that, whether in the “one to one” model or “one to N” model, there exists a best interval of customized level when the revenue-sharing coefficient reaches its maximum
    corecore