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The revenue-sharing contract is one of the most important supply chain coordination contracts; it has been applied in various
supply chains. However, studies related to service supply chains with mass customization (MC) are lacking. Considering the equity
of benefit distribution between themembers of service supply chains, in this paper, we designed two revenue-sharing contracts.The
first contract for the maximum equity of a single logistics service integrator (LSI) and single functional logistics service provider
(FLSP) in a two-echelon logistics service supply chain was designed by introducing the fair entropy function (“one to one” model).
Furthermore, the method is extended to a more complex supply chain, which consists of a single LSI and multiple FLSPs. A new
contract was designed not only for considering the equity of an LSI and each FLSP but also for the equity between each FLSP (“one
to 𝑁” model). The “one to one” model in three-echelon LSSC is also provided. The result exemplifies that, whether in the “one to
one” model or “one to 𝑁” model, there exists a best interval of customized level when the revenue-sharing coefficient reaches its
maximum.

1. Introduction

The revenue-sharing coefficient is the key to designing a
revenue-sharing contract, which is a form of supply chain
coordination. The problem of designing a revenue-sharing
mechanism for the product supply chain has been researched
by many scholars for a long time [1, 2]. With the rise of
the logistics service industry, studies on revenue-sharing
mechanisms of service supply chain have appeared in recent
years [3]. But whether a revenue-sharing contract can be
applied to a service supply chain has not been reported
under MC background. Taking a logistics service supply
chain, for example, through the integration of service capacity
of upstream FLSPs, the LSI establishes the logistics service
supply chain to provide customers with mass customization
logistic service (MCLS) [4, 5]. In MC, the customized level
that was asked for by customers will affect the flexibility of
service directly. But there is no exploration about whether
the customized level will affect the application of the logistics
service supply chain revenue-sharing contract.

In this paper, themotivation of research comes fromprac-
tice and theory. From the practical level, as a new method to

attract customers,mass customized service has obtainedwide
attention in recent years. Because of the capacity of providing
scale service for multiple customers and providing cus-
tomized service for individuals, mass customized service has
dual characteristics of a scale effect and a customized effect.
It has been applied in many industries such as insurance
services [6], logistics services [7], and air services [8]. Under
the environment of MCLS, in order to meet the customized
demand of clients, downstream LSIs and upstream FLSPs
have to address the coordination and profit distribution issue.
Considering the customized level and the equity of profits, it
is necessary to design a reasonable revenue-sharing contract
to guarantee the stability of a logistics service supply chain.
On the other hand, most of the existing revenue-sharing
contract research mainly focuses on the coordination of
a common product or service supply chain [3, 9–11], but
special cases such as the supply chain revenue-sharing con-
tract research under the MCLS environment have not been
reported before. The most closely related research to this
paper is the one by Liu et al. [3]; they studied the method of
determining the optimal revenue-sharing coefficient of two-
echelon and three-echelon logistics service supply chains, but
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the study did not involve MCLS. In fact, MCLS and com-
mon services have two significant discrepancies; the first is
that the customized level will affect the design of supply
chain contracts. It is urgent to introduce the customized level
into revenue-sharing contract design from the perspective
of theory. The second is that MCLS is provided by an LSI
via integrating FLSPs’ service capacity; therefore, FLSPs have
to evaluate the equity of profit distribution. So a way to
introduce a fairness factor into a revenue-sharing contract is
also necessary to be considered.

This paper expands the research content on the basis of
Liu et al. [3]. First, this paper will take theMCLS environment
into consideration and introduce the customized level as
an important factor for the design of a revenue-sharing
contract mechanism. Second, this paper is based on the
logistics service supply chain of two echelons and establishes
a revenue-sharing mechanism model in two relations by
expanding the “one to one” relationship between the LSI
and FLSP to “one to 𝑁.” Finally, this paper aims at the
maximum of fair entropy and setting improved fair entropy
as the objective function of the model and then explores the
influence of customized level on supply chain fair entropy,
and some interesting findings are obtained. For example,
whether in the case of “one to one” or “one to 𝑁,” revenue-
sharing coefficients of the LSI will first increase and then
decrease with the increase of the customized level; that is,
there is an optimal interval of customized level that let the
revenue-sharing coefficient of the LSI reach its maximum.

This paper is organized as follows: the second chapter
is a literature review, in which we systematically review and
summarize the studies of MC mode, service supply chain,
and revenue-sharing contract. The third and fourth chapters
introduce the procedure of model establishing. We will,
respectively, illuminate the procedure of building “one to
one” and “one to 𝑁” service supply chain revenue-sharing
contract models under the MC environment. The fifth
chapter will conduct an example analysis. LINGO 11.0 will
be used for the numerical simulation of the two models
established in this paper. In last chapter, the conclusion,
some important conclusions in this paper and management
insights are summarized, and finally the limitation of this
paper and future research directions are put forward.

2. Literature Review

Our research mainly concerns the order allocation decision
under the situation of order insertion in the MCLS environ-
ment. Thus, the literature review is mainly related to the MC
mode, order allocation, and order insertion. Our research
direction will be proposed after summarizing the progression
of developments in the literature as well as its current gaps.

2.1. MC Mode and Customized Level. In 1993, Pine II and
Stan proposed that MC is a manufacturing mode to widely
provide personalized products and services, which would be
the frontier of commercial competition [12]. With 20 years’
development and application, MC mode has become the
main operation mode and the key to improving commercial

competition. Including the autoindustry, clothing industry,
and computer industry, many major economic industries
benefit from this productionmode [13]. Overall, most studies
of MC mainly discuss the production modes, including the
MC approach and its product design [14, 15], MC produc-
tion planning and control technology [16, 17], MC cost of
production [18], and factors and conditions that affect MC
[19]. With the increase of research on MC, many scholars
review the literature in the field. Fogliatto made a detailed
arrangement and summary of the literature from the 1980s.
He indicated many unsolved problems with MC, like supply
chain coordination and quality control issues, which would
be the new fields of MC research [20].

The customized level is a crucial factor in MC. A high
level of customization leads to a huge cost of production [21].
Enterprises will not produce the customized products tomeet
customers demand when the customized level is too high
[22].Therefore, it is important to define a rational customized
level. Through a mathematical optimization model, some
scholars have made specialized exploration. From the per-
spective of customer satisfaction and corporate customized
cost, Liang and Zhou worked out the way to determine
the optimal degree under the condition of fixed customized
products supply capacity [23]. By building a mathematical
model on the relationship between customized level, market
demand, and corporate profits, Zhou et al. provided guidance
for manufacturers to determine a rational customized level
[24].

With more attention paid to service supply chains, some
scholars began to research the customized level in MC
service. Liu researched the method of determining an opti-
mal customized level in a logistics service supply chain.
They proposed three different decision-making modes for
a customized level (the LSI decides the customized level;
the customer decides the customized level, customized level
decision of centralized supply chain), and these models
discussed the reaction of profits of the LSI, customers, and the
whole supply chain under different decision-making modes
with the change of customized level, respectively [7]. Overall,
most of MC research on customized levels is focused on
product supply chain currently, but there is little research on
service supply chains.

2.2. Logistics Service Supply Chain. With the development of
the logistics industry, the logistics service supply chain has
become the new hotspot in the supply chain field. Currently,
research on logistics service supply chains mainly focuses on
logistics service supply chain connotation [4, 25], logistics
service supply chain coordinatemechanism [3, 26], empirical
study of logistics service supply chain [27, 28], and selection
and performance evaluation of FLSPs [5].

In the 21st century, with the rise in MC logistics service
mode, research results show that logistics service supply
chains under the background of MC are fruitful because
of the endeavors of many scholars. For example, Rhonda
et al. built an MC supply chain service model to meet the
customers’ demand of personality [29]. Liu et al. carried out
research on the time scheduling problem under the mode
of MC logistics service and constructed the time scheduling
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model of logistics service supply chain [30]. Subsequently, Liu
et al. explored the order allocation problemof logistics service
supply chains under MC background [3]. In addition, the
decision-making problem of the customer order decoupling
point (CODP) under MC service was also studied [31].

2.3. Revenue-Sharing Contract and Its Coefficient. A supply
chain contract is an important means to promote the coordi-
nation of supply chain members. As a main form of supply
chain contract, the revenue-sharing contract has become the
hot topic in the supply chain coordination field because of
its characteristics of effectively constraining supply chain
members’ behavior. The revenue-sharing contract plays a
significant role in supply chainmanagement, especially when
confronting the uncertainty of customer demand [32].There-
fore, most research about revenue-sharing contracts assumes
customer demand uncertainty and is mainly for two-echelon
supply chains [33–36]. In recent years, revenue-sharing con-
tract researches extended to more complex situations, more
research concerning multiechelon supply chains and more
constraints. Xiang proposed a revenue-sharing contract
model with an assumption that supply chainmembers should
share the cost as well as the revenue, which guarantees the
rationality and fairness of the contract [37]. Considering the
limitation of the two-echelon supply chain, van der Rhee et
al. designed a revenue-sharing contract model for extended
supply chain under stochastic demand (the extended supply
chain is the multiechelon global supply chain that fits reality)
[38].

As the key element when designing supply chain revenue-
sharing contracts, the revenue-sharing coefficient has been
a concern for many years. For example, Giannoccaro estab-
lished a revenue-sharing contract model in view of a three-
echelon supply chain and presented a revenue-sharing coef-
ficient range that can escalate the profits of supply chain
members [39]. Pang designed a supply chain revenue-sharing
model for stochastic demand.According to themodel’s result,
with the increase of retailer’s waste-averse decision bias, the
coefficient of profit distribution of the retailer to the supplier
will be decreased [10]. Qin found that if the revenue-sharing
contract defines a coefficient inconsistent with reality, it will
not be sustained. But the literatures above mainly focus on
product supply chains; besides, they only gave the revenue-
sharing coefficient range instead of an accurate value [34]. Liu
et al. put forward a method to confirm an optimal sharing
coefficient of a two-echelon logistics service supply chain
under stochastic-customer demand [3]. They also extended
it to a three-echelon logistics service supply chain containing
an LSI, an FLSP, and a logistics service subcontractor. But the
research only contains a single LSI and single FLSP. It does
not consider the MC environment and fairness factor when
there are multiple FLSPs.

2.4. Summary of Literature Review. By combining the lit-
erature of three areas, we can find that the research on
supply chain revenue-sharing contracts under theMC service
environment is deficient. Moreover, equity between multiple
FLSPs has not been considered in existing supply chain
revenue-sharing contract research. Due to the shortage of
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Figure 1: The two-echelon logistics service supply chain of a single
LSI and single FLSP.

previous research, this paper will focus on the revenue-
sharing distribution mechanism problem of logistics service
supply chains and then will consider an equity factor under
MC mode. From the perspective of maximizing the equity
perceived by supply chain members, this paper will set up
two revenue-sharing contract models and investigate the
influence of the customized level on supply chain revenue-
sharing coefficient and fair entropy.

3. The (One to One) Model

This paper focuses on the revenue-sharing contract mecha-
nism design of two stages of logistics service supply chain
with consideration of customer customization demand on
the background of MC service. This chapter will exhibit the
revenue-sharing contract model of logistics service supply
chains considering customization demand. In Section 3.1,
we will describe the problem and list basic assumptions
of this model. In Section 3.2, the revenue-sharing contract
model of two-echelon logistics service supply chains under
consideration of a single LSI and a single FLSP is presented.

3.1. Problem Description. It is assumed that a two-echelon
logistics service supply chain is composed of a single LSI 𝑅

and single FLSP 𝑆 which we called the “one to one” model.
Figure 1 shows the procedure.

Figure 1 shows that the LSI will buy logistics service
capacity from the FLSP to satisfy the customized demand
when customers’ orders contain a certain level of customiza-
tion to LSI.

The notation of parameters and variables in this model is
defined as follows.

Notations for the “One to One” Model

Decision Variables

𝑄: logistics capacity that 𝑅 needs to buy from 𝑆;
𝑡: customized level of logistics capacity that customer
needs;
𝜑: 𝑅’s share of the total sales revenue under revenue-
sharing contract;
1 − 𝜑: 𝑆’s share of the total sales revenue under rev-
enue-sharing contract.

Other Parameters

𝐶
𝑅
: marginal cost of LSI 𝑅;

𝐶
𝑢
(𝑃): the unit price of 𝑅 paying to customer when

logistics service capability is lacking;
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𝐷(𝑡): the total demand of customer to logistics service
under MC;
𝐻: the fair entropy, measuring revenue-sharing fair-
ness of 𝑅 and 𝑆;
𝐻
0
: threshold of fair entropy;

𝑃: unit price of service customer buys from 𝑅;
𝑆(𝑄): expectation of the logistics capacity of 𝑅;
𝑈: the unit price when 𝑅 returns extra logistics
capacity to 𝑆;
𝑤: the unit price when 𝑅 purchased services from 𝑆;
𝜋
𝑅
: total revenue of logistics service 𝑅, with 𝜋

󸀠

𝑅
indi-

cating the total revenue of 𝑅 under revenue-sharing
contract and 𝜋

󸀠󸀠

𝑅
indicating the total revenue of 𝑅

under game situation;
𝜋
𝑆
: total revenue of 𝑆, with 𝜋

󸀠

𝑆
indicating the total

revenue under revenue-sharing contract of 𝑆 and 𝜋
󸀠󸀠

𝑆

indicating the total revenue under game situation of
𝑆;
𝜋
𝑇
: total revenue of whole logistics service supply

chain, with 𝜋
󸀠

𝑇
indicating the total revenue of supply

chain under revenue-sharing contract and 𝜋
󸀠󸀠

𝑇
indi-

cating the total revenue of supply chain under game
situation;
𝜇: the average value of total customer service demand
𝐷;
𝜎
2: the variance of total customer service demand 𝐷;

𝛾: the weight of 𝑅 in supply chain relationship;
1 − 𝛾: the weight of 𝑆 in supply chain relationship.

Other assumptions of the “one to one” model are as fol-
lows.

Assumption 1. In order to explore the effect of different
customer’s customized level on a revenue-sharing contract,
as in Liu et al.’s study [7], assuming that customized level is
a variable 𝑡 (𝑡 > 0), 𝑡 follows a kind of distribution which is
not sure, and its distribution function is 𝐹(𝑡) and probability
density function is 𝑓(𝑡). Since the customized level 𝑡 is a
random variable, and it will change with different customers,
so, referring to Liu et al. [7], we assume that 𝑡 is subject to a
certain distribution.

Assumption 2. It is supposed that there is a correlation
between customer demand and customized level [7, 24],
which is assumed as 𝐷(𝑡) = 𝐷

0
+ 𝑘𝑡 − (1/2)ℎ𝑡

2. We
assume the average value of𝐷(𝑡) is 𝜇 and variance is 𝜎2. This
assumption is proposed to make it clear that the customer
demand is related to the customized level. In practice, higher
customized level may not lead to the increase of the customer
demand, because too high customized level will increase the
service price and finally will reduce the customer satisfaction.
Referring to [7, 24], the demand function is set as 𝐷(𝑡) =

𝐷
0
+ 𝑘𝑡 − (1/2)ℎ𝑡

2.

Assumption 3. It is assumed that the LSI’s marginal cost and
the unit price when the LSI purchase service from FLSP are
related to customized level, similar to Liu et al. [7]. It can
be assumed that 𝐶

𝑅
= 𝐶
0
+ 𝑧𝑡 and 𝑤 = 𝑤

0
+ 𝑦𝑡. Since

the customized level will affect the cost of LSI, the higher
the customized level is the higher the cost of LSI will be, so,
referring to Liu et al. [7], the customized level will affect the
wholesale price and the marginal cost of LSI.

Assumption 4. When the LSI purchases extra logistics service
capacity, it is permitted to return the extra capacity to the
FLSP and refund a unit price 𝑈 for the extra service capacity
later. 𝑈 is related to the price 𝑤 for which the LSI purchases
logistics capacity from the FLSP and variance 𝜎

2 of demand.
It is assumed that 𝑈 = 𝑤

2
/𝑙𝜎
2 [3]; 𝑙 indicates the sensitivity

coefficient of FLSP to demand variance. This assumption is
proposed to guarantee that extra logistics service capacity will
not be wasted and it should return to the FLSP in a proper
way; the return price is referring to Liu et al. [3].

Assumption 5. In order to simplify the model, it is assumed
that the FLSP has sufficient supply capacity of logistics ser-
vice; namely, the FLSP does not lack any capacity when the
LSI purchases service capacity from it.

Assumption 6. Under the revenue-sharing contract, the LSI
and FLSP are in compliance with the principles of revenue-
sharing and loss sharing. It is assumed that the LSI and
FLSP follow the ratio of 𝜑 and 1 − 𝜑 to distribute the total
revenue of supply chain [3, 40]. When the logistics service
capacity purchased by the LSI from FLSP is not able to satisfy
the customer demand, the LSI and FLSP should undertake
compensation to the customer at a ratio of 𝜑 and 1 − 𝜑. In
revenue-sharing contract, all the members should obey the
rule of “revenue and loss sharing together;” this assumption
is proposed to restrain the behavior of all the members.

3.2. The “One to One” Revenue-Sharing Contract Model.
Referring to [3, 41], in the case of “one to one,” the expectation
of logistics service capacity purchased by the LSI is

𝑆 (𝑄) = 𝐸 (min (𝑄,𝐷 (𝑡)))

= ∫

∞

0

min (𝑄,𝐷 (𝑡)) 𝑓 (𝑡) 𝑑𝑡

= 𝑄 − ∫

𝑄

0

[𝑄 − 𝐷 (𝑡)] 𝑓 (𝑡) 𝑑𝑡

= 𝑄 − ∫

𝑄

0

[𝑄 − 𝐷
0
− 𝑘𝑡 +

1

2
ℎ𝑡
2
]𝑓 (𝑡) 𝑑𝑡.

(1)

The expectation of the LSI’s excess capacity is

𝐸 (𝑄 − 𝐷 (𝑡))
+
= 𝑄 − 𝑆 (𝑄)

= ∫

𝑄

0

[𝑄 − 𝐷
0
− 𝑘𝑡 +

1

2
ℎ𝑡
2
]𝑓 (𝑡) 𝑑𝑡.

(2)
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The capacity deficit expectation of the LSI is

𝐸 (𝐷 (𝑡) − 𝑄)
+
= 𝜇 − 𝑆 (𝑄)

= 𝜇 − 𝑄

+ ∫

𝑄

0

[𝑄 − 𝐷
0
− 𝑘𝑡 +

1

2
ℎ𝑡
2
]𝑓 (𝑡) 𝑑𝑡.

(3)

TheLSI revenue function under revenue-sharing contract
is

𝜋
𝑅

= 𝜑𝑃𝑆 (𝑄) − 𝑤𝑄 − 𝐶
𝑅
𝑄 − 𝜑𝐶

𝑢 (𝑃) [𝜇 − 𝑆 (𝑄)]

− 𝑈 [𝑄 − 𝑆 (𝑄)] .

(4)

The revenue function of the FLSP is
𝜋
𝑆
= (1 − 𝜑) 𝑃𝑆 (𝑄) + 𝑤𝑄 − 𝐶

𝑆
𝑄

− (1 − 𝜑)𝐶
𝑢 (𝑃) [𝜇 − 𝑆 (𝑄)] + 𝑈 [𝑄 − 𝑆 (𝑄)] .

(5)

The revenue of the whole supply chain is

𝜋
𝑇

= 𝜋
𝑅
+ 𝜋
𝑆

= 𝑃𝑆 (𝑄) − 𝐶
𝑅
𝑄 − 𝐶

𝑆
𝑄 − 𝐶

𝑢 (𝑃) [𝜇 − 𝑆 (𝑄)] .

(6)

In logistics service supply chains, usually the LSI is the
leader and the FLSP is the follower [3]. In general, the LSI
and FLSP coexist in two kinds of relationship; one is a game
relationship; namely, the LSI and FLSP proceed with the
Stackelberg game to maximize their own profits; the other
is the revenue-sharing contract which will be studied in this
paper. Under the revenue-sharing contract, supposing that
there exists win-win cooperation between the LSI and FLSP,
the two units can be treated as a whole, which generate a
centralized decision-making model. Then maximizing the
revenue of the whole supply chain is the final target. The
condition of adopting the revenue-sharing contract is the
fact that the profits gained by the LSI and FLSP under the
revenue-sharing contract should be no less than the profits
in Stackelberg game.

3.2.1. Model under Centralized Decision-Making. Under cen-
tralized decision-making, for obtaining the maximum rev-
enue of a supply chain, the first-order condition should be
satisfied:

𝜕𝐸 (𝜋
𝑇
)

𝜕𝑄
= 0. (7)

Then the second derivative should be less than 0; that is,
𝜕
2
𝐸(𝜋
𝑇
)/𝜕𝑄
2
< 0.

Simplify the first-order condition:

𝐹 (𝑄) + [
1

2
ℎ𝑄
2
+ (1 − 𝑘)𝑄 − 𝐷

0
]𝑓 (𝑄)

=
𝑃 − 𝐶

𝑅
− 𝐶
𝑆
+ 𝐶
𝑢 (𝑃)

𝑃 + 𝐶
𝑢 (𝑃)

= 1 −
𝐶
𝑅
+ 𝐶
𝑆

𝑃 + 𝐶
𝑢 (𝑃)

.

(8)

We can calculate the optimal value of purchasing capacity
𝑄
󸀠 and optimal expectation of supply chain total revenue

𝐸(𝜋
󸀠

𝑇
).

3.2.2. Model under Decentralized Decision-Making. For en-
suring the implementation of the revenue-sharing contract,
we need to investigate the Stackelberg game model between
the LSI and FLSP, namely, a decentralized decision-making
model.

For better understanding, we define that 𝑏 = ∫
𝑄

0
[𝑄−𝐷

0
−

𝑘𝑡 + (1/2)ℎ𝑡
2
]𝑓(𝑡)𝑑𝑡; thus 𝑆(𝑄) = 𝑄 − 𝑏.

Another definition is 𝑠 = 𝜕𝑏/𝜕𝑄; thus 𝑠 = 𝐹(𝑄) +

[(1/2)ℎ𝑄
2
+ (1 − 𝑘)𝑄 − 𝐷

0
]𝑓(𝑄), and 𝜕𝑆(𝑄)/𝜕𝑄 = 1 − 𝑠.

Respective expectation revenue of the LSI and FLSP is

𝐸 (𝜋
󸀠󸀠

𝑅
) = 𝑃 (𝑄 − 𝑏) − 𝑤𝑄 − 𝐶

𝑅
𝑄 − 𝐶

𝑢 (𝑃) (𝜇 − 𝑄 + 𝑏)

−
𝑤
2

𝑙𝜎2
𝑏,

𝐸 (𝜋
󸀠󸀠

𝑆
) = [𝑤 − 𝐶

𝑆
] 𝑄 +

𝑤
2

𝑙𝜎2
𝑏.

(9)

First, to maximize the profits of FLSP 𝑆, the first-order
condition should be satisfied:

𝜕𝐸 (𝜋
󸀠󸀠

𝑆
)

𝜕𝑤
= 𝑄 +

2𝑤

𝑙𝜎2
𝑏 = 0. (10)

Then 𝑤 = −𝑄𝑙𝜎
2
/2𝑏.

Next, to maximize the profits of the LSI, the first-order
condition should be satisfied:

𝜕𝐸 (𝜋
󸀠󸀠

𝑅
)

𝜕𝑄
= [𝑃 + 𝐶

𝑢 (𝑃)] (1 − 𝑠) − 𝐶
𝑅
− 𝑤 −

𝑠𝑤
2

𝑙𝜎2
= 0, (11)

while satisfying the fact that second derivative is less than 0;
that is, 𝜕2𝐸(𝜋

󸀠󸀠

𝑅
)/𝜕𝑄
2
< 0.

We can obtain the optimal value of purchasing the capac-
ity 𝑄
󸀠󸀠 under the Stackelberg game. And by substituting

𝑄
󸀠󸀠 into the expression of 𝑤, the corresponding 𝑤 can be

calculated.
Under the constraints of rationality, the LSI and FLSP

first consider their own profits. Only if their own profits
are satisfied will the maximization of whole supply chain’s
revenue be considered. So the condition of supply chain
members to accept the revenue-sharing contract is that the
revenue obtained in this contract should be no less than
that in the decentralized decision-making model. Thus the
restraint is as follows:

𝜑𝐸 (𝜋
󸀠

𝑇
) ≥ 𝐸 (𝜋

󸀠󸀠

𝑅
)

(1 − 𝜑) 𝐸 (𝜋
󸀠

𝑇
) ≥ 𝐸 (𝜋

󸀠󸀠

𝑆
)

⇓

𝐸 (𝜋
󸀠󸀠

𝑅
)

𝐸 (𝜋
󸀠

𝑇
)

≤ 𝜑 ≤ 1 −

𝐸 (𝜋
󸀠󸀠

𝑆
)

𝐸 (𝜋
󸀠

𝑇
)
.

(12)

Formula (12) indicates that the constraints of the revenue-
sharing contract are transformed into constraints for the rev-
enue-sharing coefficient. Namely, the revenue-sharing con-
tract can be applied only when the revenue-sharing coeffi-
cient is in the interval mentioned above.
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3.2.3. The Objective Function and Constraints of Optimal
Revenue-Sharing Coefficient

(1) Establishment of Objective Function. After satisfying the
condition of revenue-sharing contract implementation, an
optimal revenue-sharing coefficient should be confirmed
to achieve fair distribution of profits between the LSI and
FLSP, thereby maintaining the revenue-sharing relationship
between them. The core idea to establish the objective
function of supply chain optimal revenue-sharing coefficient
is that the profit growth with unit-weight resource of each
supply chain member is equal [3, 42]. When the revenue-
sharing coefficient of the LSI is 𝜑, the respective profit growth
of the LSI and FLSP is

Δ𝜃
𝑅

=

𝐸 (𝜋
󸀠

𝑅
) − 𝐸 (𝜋

󸀠󸀠

𝑅
)

𝐸 (𝜋
󸀠󸀠

𝑅
)

,

Δ𝜃
𝑆
=

𝐸 (𝜋
󸀠

𝑆
) − 𝐸 (𝜋

󸀠󸀠

𝑆
)

𝐸 (𝜋
󸀠󸀠

𝑆
)

.

(13)

Considering the different weights of the LSI and FLSP in
the supply chain, suppose the weights of each are given. It is
assumed that the weight of the LSI is 𝛾; thus the weight of
FLSP is 1 − 𝛾; then the profit growth on unit-weight resource
of the LSI and FLSP is

𝜉
1
=

Δ𝜃
𝑅

𝜑𝛾𝑇
𝑅

,

𝜉
2
=

Δ𝜃
𝑆

(1 − 𝜑) (1 − 𝛾) 𝑇
𝑆

.

(14)

The total cost of the LSI is
𝑇
𝑅

= 𝑤𝑄 + 𝐶
𝑅
𝑄 + 𝜑𝐶

𝑢 (𝑃) [𝜇 − 𝑆 (𝑄)]

+ 𝑉 [𝑄 − 𝑆 (𝑄)] .

(15)

The total cost of the FLSP is

𝑇
𝑆
= 𝐶
𝑆
𝑄 + (1 − 𝜑)𝐶

𝑢 (𝑃) [𝜇 − 𝑆 (𝑄)] . (16)

Then we introduce the concept of entropy, making the
following standardized transformation to 𝜀

1
and 𝜀
2
[43]:

𝜉
󸀠

1
=

(𝜉
1
− 𝜉)

𝜎
,

𝜉
󸀠

2
=

(𝜉
2
− 𝜉)

𝜎
.

(17)

Among them,

𝜉 =
1

2

2

∑

𝑖=1

𝜉
𝑖
,

𝜎 = √
1

2

2

∑

𝑖=1

(𝜉
𝑖
− 𝜉)
2

.

(18)

They are the average value and the standard deviation of
𝜀
󸀠

𝑖
.

In order to eliminate the negative situation of 𝜉󸀠
1
and 𝜉
󸀠

2
,

coordinate translation can be applied [44]. After translational
transformation, 𝜉󸀠

𝑖
turned into 𝜉

󸀠󸀠

𝑖
: 𝜉󸀠󸀠
𝑖

= 𝐾+ 𝜉
󸀠

𝑖
;𝐾 is the range

of coordinate translation.Then, calculating the ratio 𝜆
𝑖
of 𝜉󸀠󸀠
𝑖
,

set

𝜆
1
=

𝜉
󸀠󸀠

1

𝜉
󸀠󸀠

1
+ 𝜉
󸀠󸀠

2

,

𝜆
2
=

𝜉
󸀠󸀠

2

𝜉
󸀠󸀠

1
+ 𝜉
󸀠󸀠

2

.

(19)

After obtaining 𝜆
1
and 𝜆

2
, the fair entropy of whole

supply chain is

𝐻 = −
1

ln𝑚

𝑚

∑

𝑖=1

𝜆
𝑖
ln 𝜆
𝑖
. (20)

The objective function of the optimal revenue-sharing
coefficient in this model is as follows:

𝐻 = −
1

ln 2
(𝜆
1
ln 𝜆
1
+ 𝜆
2
ln 𝜆
2
) . (21)

(2) Constraint Condition. The constraint conditions of the
model are as follows.

First, a certain constraint condition exists between the
weight and revenue-sharing coefficient of the LSI and FLSP;
it is shown as follows:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜑
𝑅

𝜑
𝑆

−
𝛾
𝑅

𝛾
𝑆

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝜀. (22)

Namely, the absolute value of the difference between the
specific value of the FLSP’s weight and the specific value of
revenue-sharing coefficient cannot exceed the critical value.
The constraint condition mentioned above can be simplified
as follows:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜑

1 − 𝜑
−

𝛾

1 − 𝛾

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝜀. (23)

Second, threshold value 𝐻
0
can be set in reality; set 𝐻 ≥

𝐻
0
. It indicates that the revenue distribution fairness of both

sides of the supply chain should be greater than a certain
threshold value.

Then the optimal revenue-sharing coefficient model
under the condition of “one to one” is shown in the following
formula:

max 𝐻 = −
1

ln 2
(𝜆
1
ln 𝜆
1
+ 𝜆
2
ln 𝜆
2
)

s.t.
𝐸 (𝜋
󸀠󸀠

𝑅
)

𝐸 (𝜋
󸀠

𝑇
)

≤ 𝜑 ≤ 1 −

𝐸 (𝜋
󸀠󸀠

𝑆
)

𝐸 (𝜋
󸀠

𝑇
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜑

1 − 𝜑
−

𝛾

1 − 𝛾

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝜀

𝐻 ≥ 𝐻
0
.

(24)
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Functional logistics

Functional logistics
service provider 

Customer
(manufacturing/

retailer)

Logistics
service

integrator R
P

Functional logistics

service provider S1

service provider Si

SN

···

(Q1, wi, 𝜑i)

(Qi, wi, 𝜑i)

(QN, wN, 𝜑N)

(D, t)

Figure 2: The two-echelon logistics service supply chain of “one to
𝑁.”

This model is a single goal programming model. Under
the condition of certain notations that are given, by making
use of LINGO 11.0, we can program the objective function
of the customized level and its constraint conditions and
calculate the optimal customized level.

4. The (One to 𝑁) Model

4.1. Problem Description. Another supply chain model
researched in this paper is a two-echelon logistics service
supply chain model which is composed of a single LSI and
𝑁 FLSPs (in a short form of one to 𝑁). The model operation
schematic diagram is shown in Figure 2.

It is assumed that customers have 𝑁 kinds of demand.
𝑁 FLSPs are needed to satisfy the various demands. These
demands have a certain similarity in that they belong to the
same broad heading of logistics service. And MC is provided
to customers by integrating these𝑁 kinds of logistics service
demand. As the number of optional FLSPs in reality is always
greater than 𝑁, the LSI needs to choose 𝑁 from numerous
FLSPs to meet the multiple customization demands and then
provide service. The process of choosing FLSPs will not be
considered in this paper, thus assuming that the𝑁FLSPs have
been chosen to accomplish the customization service. In this
paper, research is focused on the revenue-sharing problem
between the LSI and the decided 𝑁 FLSPs. The operation
process of the “one to 𝑁” model is as follows.

Firstly, the LSI will analyze the customization demand of
logistics service asked by customers; then different FLSPs will
be chosen by the LSI to purchase different logistics service
capacity. Based on the given contract parameter (𝑤

𝑖
, 𝜑
𝑖
), each

FLSP will provide the optimal service capacity 𝑄
𝑖
to the LSI,

and both sides realize their profits. In the case of “one to 𝑁,”
the LSI to each FLSP is same as “one to one,” but, compared
with the “one to one” model, three discrepancies should
be considered in the “one to 𝑁” model: first, the fairness
between the LSI and each FLSP, second, the fairness factor
of distribution between 𝑁 FLSP, and third, maximizing the
total fair entropy of all FLSPs.

The same as in the “one to one” assumptions, the conno-
tation of notations and variables in this model are as follows.

Notations for the “One to 𝑁” Model

Decision Variables

𝑄
𝑖
: logistics capacity that 𝑅 needs to buy from 𝑆

𝑖
;

𝑡
𝑖
: customized level of 𝑖 logistics service capacity that

customer needs;
𝜑
𝑖
: the revenue-sharing coefficient of 𝑅 between the

revenue-sharing contract of 𝑅 and 𝑆
𝑖
;

1 − 𝜑
𝑖
: the revenue-sharing coefficient of 𝑆

𝑖
between

the revenue-sharing contract of 𝑅 and 𝑆
𝑖
.

Other Parameters

𝐶
𝑅𝑖
: marginal cost of LSI 𝑅 aiming at the type 𝑖 of

Customized service;
𝐶
𝑆𝑖
: Production cost of unit logistics service of FLSPs

aiming at the type 𝑖 of customized service;
𝐶
𝑢
(𝑃
𝑖
): the unit price of 𝑅 paying to customer when

logistics service capability is lacking;
𝐷: the total demand of customer to logistics service
under MC;
𝐷(𝑡
𝑖
): customization service demand faced by 𝑆

𝑖
;

𝐻
1𝑖
: the fair entropy to measure the revenue-distri-

bution fairness between 𝑅 and 𝑆
𝑖
under revenue-

sharing contract;
𝐻
2𝑖
: the fair entropy to measure the relative equity

between 𝑆
𝑖
and all of the other FLSPs;

𝐻: the total of all entropy;
𝐻
0
: threshold of fair entropy;

𝑖: FLSP 𝑆
𝑖
, 𝑖 = 1, 2, . . . , 𝑁;

𝑁: the number of all FLSPs;
𝑃
𝑖
: unit price of service customer purchasing type 𝑖 of

customized service from 𝑅;
𝑆(𝑄
𝑖
): expectation of the logistics capacity of𝑅 aiming

at type 𝑖 of customized service;
𝑆(𝑄): expectation of the total logistics capacity of 𝑅,
with 𝑆(𝑄) = ∑

𝑁

𝑖=1
𝑆(𝑄
𝑖
);

𝑈
𝑖
: the unit price when 𝑅 returns extra logistics

capacity to 𝑆
𝑖
;

𝑤
𝑖
: the unit price when 𝑅 purchased services from 𝑆

𝑖

for type 𝑖 of customized service;
𝜋
𝑅𝑖
: the profits of 𝑅 for customization service 𝑖, with

𝜋
󸀠

𝑅𝑖
indicating the profits of 𝑅 under revenue-sharing

contract and 𝜋
󸀠󸀠

𝑅𝑖
indicating the profits of 𝑅 under

game situation;

𝜋
𝑅
: the total revenue of 𝑅, with 𝜋

𝑅
= ∑
𝑁

𝑖=1
𝜋
𝑅𝑖
;

𝜋
𝑆𝑖
: the total revenue of 𝑆

𝑖
, with 𝜋

󸀠

𝑆
indicating the

total revenue of 𝑆
𝑖
under revenue-sharing contract

and 𝜋
󸀠󸀠

𝑆
indicating the total revenue of 𝑆

𝑖
under game

situation;
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𝜋
𝑆
: the total revenue of all the FLSPs;

𝜋
𝑇𝑖
: the total revenue of the supply chain composed of

𝑆
𝑖
and 𝑅;

𝜋
𝑇
: the total revenue of the whole logistics service

supply chain;

𝛾
𝑖
: the weight of LSI in the supply chain composed of

𝑅 and 𝑆
𝐼
;

1 − 𝛾
𝑖
: the weight of 𝑆

𝑖
in the supply chain composed

of 𝑅 and 𝑆
𝑖
.

Specific assumptions of the “one to 𝑁” model are as
follows; the practical basis of Assumptions 1, 2, and 4 is the
same as “one to one” model.

Assumption 1. Assuming that the logistics capacity demands
of customers exhibit diversity and assuming a customized
level of each demand as 𝑡

𝑖
, the same as Liu et al. [7], set 𝑡

𝑖

obeys a certain distribution, the distribution function is𝐹(𝑡
𝑖
),

and the probability density function is 𝑓(𝑡
𝑖
).

Assumption 2. It is assumed that there is a correlation
between customer demand and customized level [7, 24];
setting the sum of customer customization demand faced by
the LSI as𝐷, the demand for each FLSP distributed by the LSI
is𝐷(𝑡

𝑖
) = 𝐷

𝑖0
+𝑘𝑡
𝑖
− (1/2)𝑡

𝑖

2. We assume the average value of
𝐷(𝑡
𝑖
) is 𝜇
𝑖
and variance is 𝜎

𝑖

2.

Assumption 3. Similar to [5], the capacity supplied by each
FLSP is independent; mutual utilization of different FLSPs’
capacities are forbidden forbidden. It will be a very compli-
cated problem if their capacities are related mutually. So this
assumption is proposed to guarantee the independence of
each FLSP.

Assumption 4. Under a revenue-sharing contract, assume
that the LSI and each FLSP follow the principle of revenue-
sharing and loss-sharing. According to the ratio of 𝜑

𝑖
and

1 − 𝜑
𝑖
, the LSI and FLSP will, respectively, distribute the

total revenue of the supply chain or undertake the loss of
insufficient supply capacity.

Assumption 5. From the view of [45], assume that the rev-
enue-sharing coefficients between the LSI and each FLSP are
mutually visible in 𝑁 FLSPs.

The supply chain members perceive fairness by compar-
ing the revenue-sharing coefficients in a proper way. If the
coefficients are invisible, it will be difficult for each FLSP to
assess relatively fairness.

4.2. Revenue-Sharing Model under Condition of “One to 𝑁”.
In the case of multiple FLSPs, each FLSP is still cooperating
with the LSI one to one; then the capacity offered to customer
is the total capacity purchased from all FLSPs. When the LSI

cooperates with the FLSP 𝑖, the logistics capacity expectation
of the LSI is

𝑆 (𝑄
𝑖
) = 𝐸 (min (𝑄

𝑖
, 𝐷 (𝑡
𝑖
)))

= ∫

∞

0

min (𝑄
𝑖
, 𝐷 (𝑡
𝑖
)) 𝑓 (𝑡

𝑖
) 𝑑𝑡

= 𝑄
𝑖
− ∫

𝑄𝑖

0

[𝑄
𝑖
− 𝐷 (𝑡

𝑖
)] 𝑓 (𝑡

𝑖
) 𝑑𝑡

= 𝑄
𝑖
− ∫

𝑄𝑖

0

[𝑄
𝑖
− 𝐷
0𝑖

− 𝑘𝑡
𝑖
+

1

2
ℎ𝑡
𝑖

2
]𝑓 (𝑡
𝑖
) 𝑑𝑡.

(25)

Expectation of the LSI’s excess capacity is

𝐸
𝑖
(𝑄
𝑖
− 𝐷 (𝑡

𝑖
))
+
= 𝑄
𝑖
− 𝑆 (𝑄

𝑖
)

= ∫

𝑄𝑖

0

[𝑄
𝑖
− 𝐷
0𝑖

− 𝑘𝑡
𝑖
+

1

2
ℎ𝑡
𝑖

2
]𝑓 (𝑡
𝑖
) 𝑑𝑡.

(26)

Expectation of the LSI’s insufficient capacity is

𝐸
𝑖
(𝐷 (𝑡
𝑖
) − 𝑄
𝑖
)
+
= 𝜇
𝑖
− 𝑆 (𝑄

𝑖
)

= 𝜇
𝑖
− 𝑄
𝑖
+ ∫

𝑄𝑖

0

[𝑄
𝑖
− 𝐷
0𝑖

− 𝑘𝑡
𝑖
+

1

2
ℎ𝑡
𝑖

2
]𝑓 (𝑡
𝑖
) 𝑑𝑡.

(27)

The revenue function of the LSI under a revenue-sharing
contract is

𝜋
𝑅𝑖

= 𝜑
𝑖
𝑃
𝑖
𝑆 (𝑄
𝑖
) − 𝑤
𝑖
𝑄
𝑖
− 𝐶
𝑅𝑖
𝑄
𝑖

− 𝜑
𝑖
𝐶
𝑢
(𝑃
𝑖
) [𝜇
𝑖
− 𝑆 (𝑄

𝑖
)] − 𝑈 [𝑄

𝑖
− 𝑆 (𝑄

𝑖
)] .

(28)

The function of the LSI’s total revenue is

𝜋
𝑅𝑖

= 𝜑
𝑖
𝑃
𝑖
𝑆 (𝑄
𝑖
) − 𝑤
𝑖
𝑄
𝑖
− 𝐶
𝑅𝑖
𝑄
𝑖

− 𝜑
𝑖
𝐶
𝑢
(𝑃
𝑖
) [𝜇
𝑖
− 𝑆 (𝑄

𝑖
)] − 𝑈 [𝑄

𝑖
− 𝑆 (𝑄

𝑖
)] .

(29)

The revenue function of the FLSP 𝑖 is

𝜋
𝑆𝑖

= (1 − 𝜑
𝑖
) 𝑃
𝑖
𝑆 (𝑄
𝑖
) + 𝑤
𝑖
𝑄
𝑖
− 𝐶
𝑆𝑖
𝑄
𝑖

− (1 − 𝜑
𝑖
) 𝐶
𝑢
(𝑃
𝑖
) [𝜇
𝑖
− 𝑆 (𝑄

𝑖
)]

+ 𝑈 [𝑄
𝑖
− 𝑆 (𝑄

𝑖
)] .

(30)

The revenue function of a supply chain branch composed
of the LSI and the FLSP 𝑖 is

𝜋
𝑇𝑖

= 𝜋
𝑅𝑖

+ 𝜋
𝑆𝑖

= 𝑃
𝑖
𝑆 (𝑄
𝑖
) − 𝐶
𝑅𝑖
𝑄
𝑖
− 𝐶
𝑆𝑖
𝑄
𝑖

− 𝐶
𝑢
(𝑃
𝑖
) [𝜇
𝑖
− 𝑆 (𝑄

𝑖
)] .

(31)

There is a relationship of a cooperative game existing
between the LSI 𝑅 and each FLSP, and the process of the
cooperative game is similar to that mentioned in the “one to
one” model of third chapter.
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4.2.1. Centralized Decision-Making Model. Being similar to
“one to one” situation, when the LSI obtains the optimal value
of logistics capacity 𝑄

𝑖
, it must be

𝜕𝐸 (𝜋
𝑇𝑖
)

𝜕𝑄
𝑖

= 0. (32)

Satisfy the condition that second variance is less than 0:
𝜕
2
𝐸(𝜋
𝑇𝑖
)/𝜕𝑄
𝑖

2
< 0.

Simplify the condition of first order:

𝐹 (𝑄
󸀠

𝑖
) + [

1

2
ℎ𝑄
󸀠2

𝑖
+ (1 − 𝑘)𝑄

󸀠

𝑖
− 𝐷
0
]𝑓 (𝑄

󸀠

𝑖
)

=
𝑃
𝑖
− 𝐶
𝑅𝑖

− 𝐶
𝑆𝑖

+ 𝐶
𝑢
(𝑃
𝑖
)

𝑃
𝑖
+ 𝐶
𝑢
(𝑃
𝑖
)

= 1 −
𝐶
𝑅𝑖

+ 𝐶
𝑆𝑖

𝑃 + 𝐶
𝑢
(𝑃
𝑖
)
.

(33)

From formula (33), we can calculate the optimal purchase
volumes of logistics service 𝑄

󸀠

𝑖
from the FLSP 𝑖 and the opti-

mal expectation of profits𝐸(𝜋
󸀠

𝑇𝑖
) of the 𝑖 supply chain branch.

The last formula is suitable for every supply chain branch,
so the optimal purchase volumes of logistics capacity pur-
chased from all FLSPs by the LSI can be calculated: 𝑄󸀠 =

∑
𝑁

𝑖=1
𝑄
󸀠

𝑖
.

And the optimal expectation of supply chain total revenue
is 𝐸(𝜋

󸀠

𝑇
) = ∑

𝑁

𝑖=1
𝐸(𝜋
󸀠

𝑇𝑖
).

4.2.2. Stackelberg GameModel. For the Stackelberg game, the
revenue expectation functions of 𝑅 is

𝐸 (𝜋
𝑅𝑖
) = 𝑃
𝑖
(𝑄
𝑖
− 𝑏
𝑖
) − 𝑤
𝑖
𝑄
𝑖
− 𝐶
𝑅
𝑄
𝑖

− 𝐶
𝑢
(𝑃
𝑖
) (𝜇
𝑖
− 𝑄
𝑖
+ 𝑏
𝑖
) −

𝑤
𝑖

2

𝑘
𝑖
𝜎
𝑖
2
𝑏
𝑖
.

(34)

The revenue expectation functions of 𝑆
𝑖
is

𝐸 (𝜋
𝑆𝑖
) = [𝑤

𝑖
− 𝐶
𝑆𝑖
] 𝑄
𝑖
+

𝑤
𝑖

2

𝑙
𝑖
𝜎
𝑖
2
𝑏
𝑖
. (35)

Before 𝑅 adopts the value of 𝑄
𝑖
, the reaction of 𝑤

𝑖
to 𝑆
𝑖

should be considered.The calculation details of𝑤
𝑖
and𝑄

𝑖
are

shown in Appendix A.
For each supply chain branch, the condition of supply

chain members who receive the revenue-sharing contract is
that the revenue they obtain under this contract should not be
less than that under decentralized decision-making. Consider

𝜑
𝑖
𝐸 (𝜋
󸀠

𝑇𝑖
) ≥ 𝐸 (𝜋

󸀠󸀠

𝑅𝑖
)

(1 − 𝜑
𝑖
) 𝐸 (𝜋

󸀠

𝑇𝑖
) ≥ 𝐸 (𝜋

󸀠󸀠

𝑆𝑖
)

𝑖 = 1, 2, . . . , 𝑁

⇓

𝐸 (𝜋
󸀠󸀠

𝑅𝑖
)

𝐸 (𝜋
󸀠

𝑇𝑖
)

≤ 𝜑
𝑖
≤ 1 −

𝐸 (𝜋
󸀠󸀠

𝑆𝑖
)

𝐸 (𝜋
󸀠

𝑇𝑖
)

𝑖 = 1, 2, . . . , 𝑁.

(36)

Under the “one to 𝑁” condition, in order to apply
the revenue-sharing contract, revenue-sharing coefficients

between the LSI and each FLSP should satisfy the condition
mentioned above.

4.2.3. The Objective Function and Constraint Conditions of
Optimal Revenue-Sharing Coefficient

(1) Establishment of Objective Function. Under the case of
multiple FLSPs, apart from the revenue-sharing fairness
between the LSI and each FLSP, the fairness of the revenue-
sharing coefficient between multiple FLSPs should also be
considered. So a new fair entropy is defined, which is com-
posed of two parts, one is the fair entropy between the LSI
and FLSP 𝑖, and the other is the fair entropy between the FLSP
𝑖 and other FLSPs.

(i) The Fair Entropy between the LSI and FLSP 𝑖. Similar to
the establishment of fair entropy in the situation of “one to
one,” the core idea is that the profits’ growth on unit-weight
resource of each supply chain member is equal [4, 44]. The
calculation details of the fair entropy between the LSI and the
FLSP 𝑖 are shown in Appendix B.

So, the fair entropy between the LSI and FLSP 𝑖 in this
model is

𝐻
1𝑖

= −
1

ln 2
(𝜆
𝑅𝑖
ln 𝜆
𝑅𝑖

+ 𝜆
𝑆𝑖
ln 𝜆
𝑆𝑖
) . (37)

(ii) The Fair Entropy between FLSP 𝑖 and Other FLSPs. As the
revenue-sharing coefficient between the LSI and each FLSP is
visible, each FLSP will perceive the fairness of the revenue-
sharing coefficient. So it is significant to take this part of
fair entropy into consideration. The core idea of establishing
the fair entropy is the relative equity of the revenue-sharing
coefficient.

Assuming that the weight of each FLSP is 𝜔
𝑖
, and as the

revenue-sharing coefficient of FLSP 𝑖 is (1 − 𝜑
𝑖
), set 𝜂

𝑖
= (1 −

𝜑
𝑖
)/𝜔
𝑖
.

Introducing the concept of entropy makes a transfor-
mation of 𝜂

𝑖
: 𝜂󸀠
𝑖

= ((𝜂
𝑖
− 𝜂
𝑖
)/𝜎
𝜂
)𝜂
𝑖
is the average value of

𝜂
𝑖
; 𝜎
𝜂
is the standard deviation of 𝜂

𝑖
. For eliminating the

negative value, make a coordinate translation: 𝜂
󸀠󸀠

𝑖
= 𝜂
󸀠

𝑖
+

𝐾
2
, 𝐾
2
is the range of coordinate translation. Then proceed

with the normalization: 𝜌
𝑖
= 𝜂
󸀠󸀠

𝑖
/∑
𝑁

𝑖=1
𝜂
󸀠󸀠

𝑖
. Finally, calculate

the fair entropy value between the FLSP and others: 𝐻
2𝑖

=

−(1/ ln𝑁)(∑
𝑁

𝑖=1
𝜌
𝑖
ln 𝜌
𝑖
).

(iii) Objective Function of Total Fair Entropy. In the case of
“one to 𝑁,” maximizing the total fair entropy is the con-
notation of objective function in this model. For FLSP 𝑖, two
parts are combined in fair entropy; they are the fair entropy
between the LSI and FLSP 𝑖 and the fair entropy between
FLSP 𝑖 and other FLSPs. So the summation of 𝑁 FLSPs’ fair
entropies is

𝐻 =

𝑁

∑

𝑖=1

𝐻
𝑖
= −

𝑁

∑

𝑖=1

[
1

ln 2
(𝜆
𝑅𝑖
ln 𝜆
𝑅𝑖

+ 𝜆
𝑆𝑖
ln 𝜆
𝑆𝑖
)

+
1

ln𝑁
(

𝑁

∑

𝑖=1

𝜌
𝑖
ln 𝜌
𝑖
)] .

(38)
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(wR, e1) (D, t)(wS, e2)

Figure 3: The model of three-echelon LSSC.

(2) Establishing the Constrains. To be similar to the “one to
one”model, the “one to𝑁”model restrains the absolute value
of the difference between the ratio of the revenue-sharing
coefficient of the LSI and that of FLSP to be not greater than

the critical value. For equity, we assume the threshold value
of total fair entropy is 𝐻

0
; set 𝐻 > 𝐻

0
. Under the condition

of “one to 𝑁,” the model of the optimal revenue-sharing
coefficient is shown in the following formula:

max 𝐻 = −

𝑁

∑

𝑖=1

[
1

ln 2
(𝜆
𝑅𝑖
ln 𝜆
𝑅𝑖

+ 𝜆
𝑆𝑖
ln 𝜆
𝑆𝑖
) +

1

ln𝑁
(

𝑁

∑

𝑖=1

𝜌
𝑖
ln 𝜌
𝑖
)]

s.t.
𝐸 (𝜋
󸀠󸀠

𝑅𝑖
)

𝐸 (𝜋
󸀠

𝑇𝑖
)

≤ 𝜑
𝑖
≤ 1 −

𝐸 (𝜋
󸀠󸀠

𝑆𝑖
)

𝐸 (𝜋
󸀠

𝑇𝑖
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜑
𝑖

1 − 𝜑
𝑖

−
𝛾
𝑖

1 − 𝛾
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝜀
𝑖

𝐻 ≥ 𝐻
0
.

(39)

This model is a single objective programming model
and is aimed at calculating 𝜑

𝑖
(𝑖 = 1, 2, . . . , 𝑁). Under the

condition of given notations, the model can be programmed
using LINGO 11.0 to find the optimal customized level.

5. Model Extension: The (One to One)
Model of Three-Echelon Logistics Service
Supply Chains

Now we extend the “one to one” and “one to 𝑁” models
to three-echelon logistics service supply chains. Since the
way to extend the two models is the same, the “one to one”
model of three-echelon LSSC is chosen to be described in
detail. In Section 5.1, we will describe the problem and list
basic assumptions of this model. In Section 5.2, the revenue-
sharing contract model of three-echelon logistics service
supply chains under consideration of a single LSI, a single
FLSP, and a single subcontractor is presented.

5.1. Problem Description. In practice, the supply chain mem-
bers always contain more than the LSP and the FLSP; it is
assumed that the FLSP subcontracts its logistics capacity to
the upstream logistics subcontractor 𝐼, so there are three
participants in LSSC. The model of the three-echelon LSSC
is shown in Figure 3. Notations for the “One to One” Model
of Three-Echelon LSSC are given as follows.

Notations for the “One to One” Model of Three-Echelon LSSC

Decision Variables
𝑄: logistics capacity that 𝑅 needs to buy from 𝑆;
𝑡: customized level of logistics capacity that customer
needs;

𝑒
1
: 𝑅’s share of the sales revenue under revenue-shar-

ing contract of 𝑅 and 𝑆;
1 − 𝑒
1
: 𝑆’s share of the sales revenue under revenue-

sharing contract of 𝑅 and 𝑆;
𝑒
2
: 𝑆’s share of the sales revenue under revenue-shar-

ing contract of 𝑆 and 𝐼;
1 − 𝑒
2
: 𝐼’s share of the sales revenue under revenue-

sharing contract of 𝑆 and 𝐼.

Other Parameters

𝐶
𝑅
: marginal cost of LSI 𝑅;

𝐶
𝑢
(𝑃): the unit price of 𝑅 paying to customer when

logistics service capability is lacking;
𝐷(𝑡): the total demand of customer to logistics service
under MC;
𝐻: the fair entropy, measuring revenue-sharing fair-
ness of 𝑅 and 𝑆;
𝐻
0
: threshold of fair entropy;

𝑃: unit price of service customer buys from 𝑅;
𝑆(𝑄): expectation of the logistics capacity of 𝑅;
𝑈: the unit price when 𝑅 returns extra logistics
capacity to 𝑆;
𝑤
𝑅
: The unit price when 𝑅 purchased services from 𝑆;

𝑤
𝑆
: The unit price when 𝑆 purchased services from 𝐼;

𝜋
𝑅
: total revenue of logistics service 𝑅, with 𝜋

𝑅1

indicating the total revenue of 𝑅 under revenue-shar-
ing contract and 𝜋

𝑅2
indicating the total revenue of 𝑅

under game situation;
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𝜋
𝑆
: total revenue of 𝑆, with 𝜋

𝑆1
indicating the total

revenue under revenue-sharing contract of 𝑆 and 𝜋
𝑆2

indicating the total revenue under game situation of
𝑆;
𝜋
𝐼
: total revenue of 𝐼, with 𝜋

𝐼1
indicating the total

revenue under revenue-sharing contract of 𝐼 and 𝜋
𝐼2

indicating the total revenue under game situation of
𝐼;
𝜋
𝑇
: total revenue of whole logistics service supply

chain, with 𝜋
𝑇1

indicating the total revenue of supply
chain under revenue-sharing contract and 𝜋

𝑇2
indi-

cating the total revenue of supply chain under game
situation;
𝜇: the average value of total customer service demand
𝐷;
𝑈
1
: unit price paid to 𝑆when𝑅has extra capacity, with

𝑈
1
= 𝑤
𝑅

2
/𝑙
1
𝜎
2;

𝑈
2
: unit price paid to 𝐼when 𝑆 has extra capacity, with

𝑈
2
= 𝑤
𝑆

2
/𝑙
2
𝜎
2;

𝜎
2: the variance of total customer service demand 𝐷;

𝛾
󸀠: the weight of 𝑅 in the relationship of 𝑆 and 𝑅;

1 − 𝛾
󸀠: the weight of 𝑆 in the relationship of 𝑆 and 𝑅;

𝛾
󸀠󸀠: the weight of 𝑆 in the relationship of 𝑆 and 𝐼;

1 − 𝛾
󸀠󸀠: the weight of 𝐼 in the relationship of 𝑆 and 𝐼.

5.2. The “One to One” Model in Three-Echelon LSSC. In the
revenue-sharing contract of the “one to one” model in three-
echelonLSSC, the revenue expectation functions of LSI, FLSP,
subcontractor, and the entire LSSC are as follows.

The revenue of the integrator 𝑅 is

𝜋
𝑅

= 𝑒
1
𝑃𝑆 (𝑄) − 𝑤

𝑅
𝑄 − 𝐶

𝑅
𝑄 − 𝑒
1
𝐶
𝑢 (𝑃) [𝜇 − 𝑆 (𝑄)]

− 𝑈
1 [𝑄 − 𝑆 (𝑄)] .

(40)

The revenue of the functional service provider 𝑆 is

𝜋
𝑆
= 𝑒
2
[(1 − 𝑒

1
) 𝑃𝑆 (𝑄) + 𝑤

𝑅
𝑄] − 𝐶

𝑆
𝑄 − 𝑤

𝑆
𝑄

− 𝑒
2
(1 − 𝜑

2
) 𝐶
𝑢 (𝑃) [𝜇 − 𝑆 (𝑄)]

+ 𝑈
1 [𝑄 − 𝑆 (𝑄)] − 𝑈

2 [𝑄 − 𝑆 (𝑄)] .

(41)

The revenue of the subcontractor 𝐼 is

𝜋
𝐼
= (1 − 𝑒

2
) [(1 − 𝑒

1
) 𝑃𝑆 (𝑄) + 𝑤

𝑅
𝑄] + 𝑤

𝑅
𝑄 − 𝐶

𝐼
𝑄

− (1 − 𝑒
2
) (1 − 𝑒

1
) 𝐶
𝑢 (𝑃) [𝜇 − 𝑆 (𝑄)]

+ 𝑈
2 [𝑄 − 𝑆 (𝑄)] .

(42)

Under centralized control, the revenue of the entire LSSC
is

𝜋
𝑇

= 𝜋
𝑅
+ 𝜋
𝑆
+ 𝜋
𝐼

= 𝑃𝑆 (𝑄) − 𝐶
𝑅
𝑄 − 𝐶

𝑆
𝑄 − 𝐶

𝐼
𝑄

− 𝐶
𝑢 (𝑃) [𝜇 − 𝑆 (𝑄)] .

(43)

5.2.1. Centralized Decision-Making Model. Being similar to
“one to one” situation in two-echelon supply chain, when the
LSI obtains the optimal value of logistics capacity, it must
satisfy

𝜕𝐸 (𝜋
𝑇
)

𝜕𝑄
= 0. (44)

Then the second derivative should be less than 0; that is,
𝜕
2
𝐸(𝜋
𝑇
)/𝜕𝑄
2
< 0.

Simplify the first-order condition:

𝐹 (𝑄) + [
1

2
ℎ𝑄
2
+ (1 − 𝑘)𝑄 − 𝐷

0
]𝑓 (𝑄)

=
𝑃 − 𝐶

𝑅
− 𝐶
𝑆
− 𝐶
𝐼
+ 𝐶
𝑢 (𝑃)

𝑃 + 𝐶
𝑢 (𝑃)

= 1 −
𝐶
𝑅
+ 𝐶
𝑆
+ 𝐶
𝐼

𝑃 + 𝐶
𝑢 (𝑃)

.

(45)

We can calculate the optimal value of purchasing capacity
𝑄
1
and optimal expectation of supply chain total revenue𝜋

𝑇1
.

5.2.2. Stackelberg GameModel. For the Stackelberg game, the
revenue expectation functions of 𝑅 are

𝐸 (𝜋
𝑅2

) = 𝑃 (𝑄 − 𝑏) − 𝑤
𝑅
𝑄 − 𝐶

𝑅
𝑄

− 𝐶
𝑢 (𝑃) (𝜇 − 𝑄 + 𝑏) −

𝑤
𝑅

2

𝑙
1
𝜎2

𝑏.

(46)

The revenue expectation functions of 𝑆 are

𝐸 (𝜋
𝑆2
) = [𝑤

𝑅
− 𝐶
𝑆
− 𝐶
𝐼
] 𝑄 +

𝑤
𝑅

2

𝑙
1
𝜎2

𝑏 −
𝑤
𝑆

2

𝑙
2
𝜎2

𝑏. (47)

The revenue expectation functions of 𝐼 are

𝐸 (𝜋
𝐼2
) = [𝑤

𝑆
− 𝐶
𝐼
] 𝑄 +

𝑤
𝑆

2

𝑙
2
𝜎2

𝑏. (48)

Before 𝑅 adopts the value of 𝑄, the reaction of 𝑤
𝑅
to

𝑆 should be considered, while 𝑆 make decision on 𝐼. The
calculation details are shown in Appendix C.

Under the constraints of rationality, the LSI, FLSP, and
subcontractor will first consider their own profits. Only if
their own profits are satisfied will the maximization of whole
supply chain’s revenue be considered. So the condition of
supply chainmembers to accept the revenue-sharing contract
is that the revenue obtained in this contract should be no less



12 Mathematical Problems in Engineering

than that in the decentralized decision-making model. Thus
the restraint is listed as follows:

𝑒
1
𝐸 (𝜋
󸀠

𝑇
) ≥ 𝐸 (𝜋

󸀠󸀠

𝑅
)

(1 − 𝑒
1
) 𝑒
2
𝐸 (𝜋
󸀠

𝑇
) ≥ 𝐸 (𝜋

󸀠󸀠

𝑆
)

(1 − 𝑒
1
) (1 − 𝑒

2
) 𝐸 (𝜋

󸀠

𝑇
) ≥ 𝐸 (𝜋

󸀠󸀠

𝐼
)

⇓

𝐸 (𝜋
󸀠󸀠

𝑅
)

𝐸 (𝜋
󸀠

𝑇
)

≤ 𝑒
1
≤ 1 −

𝐸 (𝜋
󸀠󸀠

𝑆
) + 𝐸 (𝜋

󸀠󸀠

𝐼
)

𝐸 (𝜋
󸀠

𝑇
)

𝐸 (𝜋
󸀠󸀠

𝑆
)

(1 − 𝑒
1
) 𝐸 (𝜋

󸀠

𝑇
)

≤ 𝑒
2
≤ 1 −

𝐸 (𝜋
󸀠󸀠

𝐼
)

(1 − 𝑒
1
) 𝐸 (𝜋

󸀠

𝑇
)
.

(49)

5.2.3. The Objective Function and Constraint Conditions of
Optimal Revenue-Sharing Coefficient

(1) Objective Function. Similar to the establishment of fair
entropy in the situation of “one to one,” the core idea is that
the profits’ growth on unit-weight resource of each supply
chain member is equal. The calculation details of the fair
entropy between 𝑅, 𝑆, and 𝐼 are shown in Appendix D.

So, the fair entropy in this model is

𝐻 = −
1

ln 3
(𝜆
1
ln 𝜆
1
+ 𝜆
2
ln 𝜆
2
+ 𝜆
3
ln 𝜆
3
) . (50)

(2) Constraint Condition. The constraint conditions of the
model are listed as follows.

First, a certain constraint condition exists between the
weight and revenue-sharing coefficient of the LSI and the
FLSP and the FLSP and the subcontractor; 𝛾󸀠 represents the
weight of LSI in the whole LSSC; 𝛾󸀠󸀠 represents the weight
of FLSP in the relationship of FLSP and subcontractor; it is
shown as follows:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑒
𝑅

𝑒
𝑆

−
𝛾
𝑅

𝛾
𝑆

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝜀,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑒
𝑆

𝑒
𝐼

−
𝛾
𝑆

𝛾
𝐼

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝜀.

(51)

The constraint conditionmentioned above can be simpli-
fied as follows:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑒
1

(1 − 𝑒
1
) 𝑒
2

−
𝛾
󸀠

(1 − 𝛾󸀠) 𝛾󸀠󸀠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝜀,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(1 − 𝑒
1
) 𝑒
2

(1 − 𝑒
1
) (1 − 𝑒

2
)
−

(1 − 𝛾
󸀠
) 𝛾
󸀠󸀠

(1 − 𝛾󸀠) (1 − 𝛾󸀠󸀠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝜀.

(52)

Second, threshold value 𝐻
0
can be set in reality; set 𝐻 ≥

𝐻
0
. It indicates that the revenue distribution fairness of each

side of the supply chain should be greater than a certain
threshold value.

Then the optimal revenue-sharing coefficient model
under the condition of “one to one” is shown in the following
formula:

max 𝐻 = −
1

ln 3
(𝜆
1
ln 𝜆
1
+ 𝜆
2
ln 𝜆
2
+ 𝜆
3
ln 𝜆
3
)

s.t.
𝐸 (𝜋
󸀠󸀠

𝑅
)

𝐸 (𝜋
󸀠

𝑇
)

≤ 𝑒
1
≤ 1 −

𝐸 (𝜋
󸀠󸀠

𝑆
) + 𝐸 (𝜋

󸀠󸀠

𝐼
)

𝐸 (𝜋
󸀠

𝑇
)

𝐸 (𝜋
󸀠󸀠

𝑆
)

(1 − 𝑒
1
) 𝐸 (𝜋

󸀠

𝑇
)

≤ 𝑒
2
≤ 1 −

𝐸 (𝜋
󸀠󸀠

𝐼
)

(1 − 𝑒
1
) 𝐸 (𝜋

󸀠

𝑇
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑒
1

(1 − 𝑒
1
) 𝑒
2

−
𝛾
󸀠

(1 − 𝛾󸀠) 𝛾󸀠󸀠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝜀

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(1 − 𝑒
1
) 𝑒
2

(1 − 𝑒
1
) (1 − 𝑒

2
)
−

(1 − 𝛾
󸀠
) 𝛾
󸀠󸀠

(1 − 𝛾󸀠) (1 − 𝛾󸀠󸀠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝜀

𝐻 ≥ 𝐻
0
.

(53)

This model is a single goal programming model. Under
the condition of certain notations that are given, by making
use of LINGO 11.0, we can program the objective function
of the customized level and its constraints and calculate the
optimal customized level.

6. The Numerical Analysis

This chapter will illustrate the validity of themodel by specific
example and explore the effect that the customized level
has on the optimal revenue-sharing coefficient of the supply
chain and fair entropy, finally giving a specific suggestion
for applying the revenue-sharing contract. For all parameters
used in numerical example, we have already made them
dimensionless. The example analysis is conducted with a PC
with 2.4GHzdual-core processor, 2 gigabytes ofmemory, and
windows 7 system; we programmed and simulated numerical
results using LINGO 11 software. The content of this chapter
is arranged as follows. In Section 6.1, numerical analysis of
“one to one” model is presented; in Section 6.2, numerical
analysis of “one to 𝑁” model is presented; in Section 6.3, the
numerical analysis of the “one to one”model in three-echelon
LSSC is provided. In Section 6.4, a discussion based on the
results of Sections 6.1 to 6.3 is presented.

6.1. The Numerical Analysis of the “One to One” Model.
The notations and formulas involved in the logistics service
supply chain model composed of a single LSI and a single
FLSP are as follows.

It is assumed that customized level 𝑡 follows the uniform
distribution in interval of [0, 8]; that is 𝑡 ∼ 𝑈(0, 8), 𝐷(𝑡) =

6 + 1.8𝑡 − 0.5𝑡
2, 𝐶
𝑅

= 0.6 + 0.25𝑡, 𝑤 = 0.4 + 0.5𝑡, 𝑃 = 15,
𝐶
𝑢
(𝑃) = 4, 𝐶

𝑆
= 0.4, 𝑙 = 2, 𝜇 = 10, 𝜎2 = 8, 𝛾 = 0.6, and

𝐻
0

= 0.6. Most of the data used here are referring to Liu et
al. [3]; others are assumed according to the practical business
data.

By changing the value of the customized level, the vari-
ation trend of the corresponding revenue-sharing coefficient
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Figure 4: 𝜑 value curve under a different customized level.
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Figure 5: 𝐻 value curve under a different customized level.

and overall fair entropy can be worked out. The customized
level 𝑡 obeys the uniform distribution in [0, 8]. From the
application result, when 𝑡 is greater than 2, then the fair
entropy will be lower than 0.5, as shown by Figure 4, which
indicates that the unfair level is high. So the case of 𝑡 > 2 will
not be considered.

As shown by Figures 4 and 5, according to the results, the
graphs of the optimal revenue-sharing coefficient 𝜑 and fair
entropy 𝐻 changing with customized level are presented.

As shown in Figure 4, with an increase in customized
level, the optimal revenue-sharing coefficient first increased
and then decreased, and the speed of increase is greater than
the speed of decrease. The optimal revenue-sharing coeffi-
cient reaches its maximum at 𝐻 = 0.2 when 𝜑

∗
= 0.5874.

As shown by Figure 5, with the value of 𝑡 in the interval
of [0, 0.15], the fair entropy can reach the maximum, that is
𝐻
∗

= 1. When 𝑡 > 1.5, with the increase of the customized
level, fair entropy decreases gradually with a low speed.When
𝑡 = 2 and𝐻 = 0.517, the fair entropy reaches a very low level.

In this model, in order to discuss the influence of final
service price on revenue and fair entropy, we choose 𝑃 = 14.6

and𝑃 = 15.4 to compare with the initial price𝑃 = 15, and the
changes of revenue-sharing coefficients under different prices
are shown in Figure 6; the changes of fair entropy under
different prices are shown in Figure 7.

As shown in Figure 6, for a certain customized level,
with an increase of the price, the optimal revenue-sharing
coefficient is increased, whichmeans the increase of price will
benefit the integrator.

As shown in Figure 7, the fair entropy can reach the
maximum under different prices; that is, 𝐻∗ = 1, and then
the fair entropy decreases gradually with a low speed. It
should be noticed that, with an increase of the price, the fair
entropy will decrease under the certain customized level.
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Figure 6: 𝜑 value curve under different prices.
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Figure 7: 𝐻 value curve under different prices.

6.2. The Numerical Analysis of the “One to 𝑁” Model. Facing
the “one to 𝑁” condition, this paper chose a typical example
of a single LSI and three FLSPs to analyze. The notations of
each FLSP are different and are given as follows.

FLSP 1: it is assumed that customized level 𝑡
1
follows

uniform distribution on [0, 8.5]; that is, 𝑡
1
∼ 𝑈(0, 8), 𝐷(𝑡

1
) =

6 + 1.8𝑡
1
− 0.5𝑡

1

2, 𝐶
𝑅1

= 0.6 + 1/3 ∗ 𝑡
1
, 𝑤
1
= 0.4 + 1/3 ∗ 𝑡

1
,

𝑃
1
= 15, 𝐶

𝑢
(𝑃
1
) = 4, 𝐶

𝑆1
= 0.4, 𝑙

1
= 2, 𝜇

1
= 10, 𝜎

1

2
= 8, and

𝛾
1
= 0.7.
FLSP 2: it is assumed that customized level 𝑡

2
follows

uniform distribution on [0, 8]; that is, 𝑡
1

∼ 𝑈(0, 8), 𝐷(𝑡
2
) =

6 + 1.9𝑡
2
− 0.5𝑡

2

2, 𝐶
𝑅2

= 0.6 + 1/4 ∗ 𝑡
2
, 𝑤
2
= 0.4 + 1/3 ∗ 𝑡

2
,

𝑃
2
= 15, 𝐶

𝑢
(𝑃
2
) = 3.8, 𝐶

𝑆2
= 0.4, 𝑙

2
= 2, 𝜇

2
= 10.1, 𝜎

2

2
= 8.1,

and 𝛾
2
= 0.65.

FLSP 3: it is assumed that customized level 𝑡
3
follows

uniform distribution on[0, 7.5]; that is, 𝑡
3
∼ 𝑈(0, 8), 𝐷(𝑡

3
) =

6+ 1.85𝑡
3
−0.25𝑡

3

2, 𝐶
𝑅3

= 0.55 + 1/3∗ 𝑡
3
,𝑤
3
= 0.4 + 1/3∗ 𝑡

3
,

𝑃
3
= 15, 𝐶

𝑢
(𝑃
3
) = 4.1, 𝐶

𝑆3
= 0.4, 𝑙

3
= 2, 𝜇

3
= 9.8, 𝜎

3

2
= 8,

and 𝛾
3
= 0.65.

Most of the data used here are referring to Liu et al. [3];
others are assumed according to the practical business situa-
tion.

As the arbitrary value of the uniform distribution interval
can be chosen by the customized level of three FLSPs, for
finding the effect of different customized level combinations
on the optimal revenue-sharing coefficient, we assume that
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Table 1: Example analysis result of one to 𝑁 model.

𝑀 𝜑
1

𝜑
2

𝜑
3

𝐻
11

𝐻
12

𝐻
13

𝐻

0 0.5796 0.5886 0.5682 0.9999 0.9999 0.9999 0.9988
0.2 0.5805 0.5903 0.5720 0.9999 0.9999 0.9999 0.9988
0.4 0.5814 0.5919 0.5757 0.9999 0.9999 0.9999 0.9988
0.6 0.5823 0.5935 0.5794 0.9999 0.9999 0.9999 0.9987
0.8 0.5831 0.5951 0.5830 0.9999 0.9999 0.9999 0.9987
1 0.5840 0.5967 0.5866 0.9999 0.9999 0.9999 0.9986
1.2 0.5849 0.5983 0.5900 0.9999 0.9998 0.9999 0.9985
1.4 0.5857 0.5990 0.5922 0.9999 0.9997 0.9997 0.9984
1.6 0.5865 0.5989 0.5917 0.9999 0.9987 0.9972 0.9979
1.8 0.5872 0.5987 0.5912 0.9999 0.9970 0.9923 0.9968
2 0.5871 0.5985 0.5907 1.0000 0.9946 0.9854 0.9953
2.2 0.5870 0.5983 0.5902 0.9999 0.9917 0.9766 0.9934
2.4 0.5868 0.5981 0.5897 0.9995 0.9881 0.9663 0.9910
2.6 0.5866 0.5979 0.5891 0.9985 0.9840 0.9546 0.9882
2.8 0.5865 0.5978 0.5886 0.9977 0.9795 0.9417 0.9851
3 0.5864 0.5976 0.5881 0.9966 0.9745 0.9276 0.9818
3.2 0.5862 0.5974 0.5876 0.9953 0.9691 0.9127 0.9782
3.4 0.5862 0.5972 0.5870 0.9946 0.9632 0.8970 0.9745
3.6 0.5860 0.5970 0.5865 0.9931 0.9571 0.8806 0.9705
3.8 0.5859 0.5968 0.5860 0.9914 0.9506 0.8635 0.9663
4 0.5858 0.5966 0.5854 0.9895 0.9438 0.8460 0.9620
4.2 0.5856 0.5965 0.5849 0.9875 0.9368 0.8281 0.9575
4.4 0.5855 0.5963 0.5844 0.9853 0.9295 0.8098 0.9528
4.6 0.5854 0.5961 0.5838 0.9830 0.9219 0.7912 0.9481
4.8 0.5852 0.5959 0.5833 0.9806 0.9142 0.7724 0.9433
5 0.5852 0.5957 0.5827 0.9793 0.9043 0.7533 0.9382

the customized level of each demand of three FLSPs has an
initial value of 𝑡

1
= 0.1, 𝑡

2
= 0.2, and 𝑡

3
= 0.4, respectively;

then zoom in (or out) the three customized levels to a specific
ratio 𝑀 at the same time and study the variation in the
optimal revenue-sharing coefficient value under different 𝑀
with 𝑀 being the independent variable. The data result is
shown in Table 1.

Based on the result shown in Table 1, trend charts of
𝑀 to three absolutely fair entropies (fair entropy between
the LSI and three FLSPs, indicated by 𝐻

11
, 𝐻
12
, and 𝐻

13
,

resp.), three revenue-sharing coefficients (revenue-sharing
coefficient between the LSI and three FLSPs, indicated by 𝜑

1
,

𝜑
2
, and 𝜑

3
, resp.), and total fair entropy (𝐻) can be severally

drawn; they are shown in Figures 8, 9, and 10.
Figure 8 shows that fair entropies between the LSI and

each FLSP are less than 1 but can be infinitely close to 1 in
the case of “one to three.” The maximum of each entropy is
𝐻
∗

11
= 𝐻
∗

12
= 𝐻
∗

13
= 0.9999 and shows a declining trend with

the increase of the customized level.
Similar to Figure 4, Figure 9 shows that all three revenue-

sharing coefficients show a trend of first increasing and then
decreasing with the increase of 𝑀. The maximum of three
revenue-sharing coefficients can be found: 𝜑∗

1
= 0.5872, 𝜑∗

2
=

0.5990, and 𝜑
∗

3
= 0.5922.
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Figure 10: Total fair entropy value curve under different 𝑀.

Figure 10 indicates the trend of total fair entropy changing
with 𝑀, which is decrease 𝑑 and has its maximum at 𝐻∗ =

0.9988. By observing Figure 10, the total fair entropy can be
infinitely close to 1, and when 𝑀 < 1.4, it stays above 0.998
with a tiny drop. These numbers indicate that there exists a
better interval of customized level that canmake entropy stay
at a high level.

Similar to the “one to one” model, in this “one to 𝑁”
model, the price of final service product is constant, so, in
order to discuss the influence of final service price on revenue
and fair entropy, we choose𝑃 = 14.6 and𝑃 = 15.4 to compare
with the initial price 𝑃 = 15, and the changes of the three
revenue-sharing coefficients under different prices are shown
in Figures 11, 12, and 13; the change of fair entropy under
different price is shown in Figure 14.
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Figures 10, 11, and 12 indicate that, under certain𝑀, with
the increase of price, the three revenue-sharing coefficients
will also increase, which means that the increase of price will
benefit the integrator.

Figure 13 shows that, under certain 𝑀, with the increase
of price, the total fair entropy will decrease, which means the
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Figure 14: Total fair entropy value curve under different prices.
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Figure 15: 𝑒
1
under a different customized level.

increase of price will lower the fairness of the whole supply
chain.

6.3. The Numerical Analysis of the “One to One” Model in
Three-Echelon LSSC. The notations and formulas involved
in the logistics service supply chain model composed of a
single LSI and a single FLSP and a single subcontractor are
as follows.

It is assumed that customized level 𝑡 follows the uniform
distribution in interval of [0, 8]; that is, 𝑡 ∼ 𝑈(0, 8.8), 𝐷(𝑡) =

8.1 + 1.8𝑡 − 0.5𝑡
2, 𝐶
𝑅

= 0.5 + 0.25𝑡, 𝑤
𝑅

= 0.3 + 1/3 ∗ 𝑡, 𝑤
𝑆
=

0.3+0.25∗𝑡,𝑃 = 15,𝐶
𝑢
(𝑃) = 3.9,𝐶

𝑆
= 0.4,𝐶

𝐼
= 0.3, 𝑙

1
= 3.5,

𝑙
2
= 3.2, 𝜇 = 13, 𝜎2 = 6, 𝐻

0
= 0.6, 𝛾󸀠 = 0.6, and 𝛾

󸀠󸀠
= 0.55.

Most of the data used here are referring to Liu et al. [3]; others
are assumed according to the practical business data.

By changing the value of the customized level, the vari-
ation trend of the corresponding revenue-sharing coefficient
and overall fair entropy can be found.

As shown in Figure 15, with the increase of the cus-
tomized level, 𝑒

1
first increases and then decreases, which is

the same as Figure 4. But 𝑒
2
keeps increasingwith the increase

of the customized level, as shown in Figure 16.That is because
before 𝑒

∗

1
the revenue-sharing ratio of𝑅will increase with the

increase of the customized level, which means the revenue-
sharing ratio of 𝑆 and 𝐼 will decrease, so FLSP 𝑆 will improve
the revenue-sharing ratio of 𝑆 between 𝑆 and 𝐼 to maximize
its own profit; then after 𝑒

∗

1
the revenue-sharing ratio of 𝑅



16 Mathematical Problems in Engineering

0.1
0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18
0.19

21 30

0.
6

1.
2

1.
4

1.
6

1.
8

0.
4

2.
2

2.
4

2.
6

2.
8

0.
2

0.
8

t

e 2

Figure 16: 𝑒
2
under a different customized level.
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different prices.

will decrease with the increase of the customized level, which
means the revenue-sharing ratio of 𝑆 and 𝐼 will increase, but
Figure 16 shows that the revenue-sharing ratio of 𝑆 between
𝑆 and 𝐼 is very low; FLSP 𝑆 will try to share more benefit, so
value curve of 𝑒

2
will keep increasing.

Figure 17 is similar to Figure 5, which indicates that,
in three-echelon LSSC, the fair entropy also can reach the
maximum; that is 𝐻

∗
= 1. With the increase of the cus-

tomized level, fair entropy decreases gradually with a low
speed.

Similar to the “one to one”model in two-echelon LSSC, in
this three-echelon model, the price of final service product is
constant, so, in sensitivity analysis of service price, we choose
𝑃 = 14.6 and 𝑃 = 15.4 to compare with the initial price 𝑃 =

15, and the changes of the two kinds of revenue-sharing coef-
ficients under different prices are shown in Figures 18 and 19;
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Figure 20: Total fair entropy value curve under different prices.

the change of fair entropy under different price is shown in
Figure 20.

As shown in Figure 18, which is similar to Figure 6, under
the certain customized level, with an increase of the price,
the optimal revenue-sharing coefficient of 𝑅 is increased.
Figure 19 indicates that, under the certain customized level,
with an increase of the price, the optimal revenue-sharing
coefficient of 𝑆 between 𝑆 and 𝐼 also increases.

As shown in Figure 20, with three different prices, all the
fair entropies can reach themaximum,whichmeans the LSSC
can reach absolutely fairness, similar to Figure 7; with the
increase of price, the total fair entropy will decrease.

6.4. Example Result Analysis. By analyzing the example
results and Figures 1–20, the conclusions can be drawn as
follows.

(1) In the case of a single LSI and single FLSP, fair
entropy of the LSI and FLSP in a revenue-sharing contract can
reach 1 (that means absolute fair) under a specific interval of
customized level (such as [0, 0.15] in this example). But, with
an increase in the customized level, the fair entropy between
the LSI and FLSP shows a trend of descending.

(2)Whether in the case of “one to one” or “one to𝑁,” the
revenue-sharing coefficient of the LSI always shows a trend
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of first increasing and then decreasing with the increase in
the customized level; namely, an optimal customized level
maximizes the revenue-sharing coefficient.

(3) As shown in Figure 5, with the increase of zooming
in (or out) of 𝑡, namely, 𝑀, under the case of “one to 𝑁,”
fair entropy between three FLSPs and an LSI shows a trend
of decrease. It suggests that fair entropy between each FLSP
and LSI cannot reach absolute fair under the case of “one to
𝑁” due to the relatively fair factors between FLSPs.

(4) In the case of “one to 𝑁,” total fair entropy decreases
with the increase of𝑀, although it cannot reach the absolute
maximum 1; there exists an interval that keeps the total fair
entropy at a high level, which is close to 1.

(5) Whether in the case of “one to one” or “one to 𝑁,”
when the customized level is certain, the revenue-sharing
coefficient of the LSI will increase with the increase of price,
but the total fair entropy will decrease.

(6) In the case of “one to one” model in three-echelon
LSSC, there are two kinds of revenue-sharing coefficients;
the revenue-sharing coefficient of the LSI will first increase
and then decrease with the increase of the customized level;
when the customized level is certain, the revenue-sharing
coefficient of the LSI will increase with the increase of price;
the revenue-sharing coefficient of the FLSP between FLSP
and subcontractor will keep increasing with the increase of
the customized level. When the customized level is certain,
the revenue-sharing coefficient of the FLSP will also increase
with the increase of price. For the “one to one” model in
three-echelon LSSC, the total fair entropy also can reach
the maximum, and, with the increase of price, the total fair
entropy will decrease.

7. Conclusions and Management Insights

7.1. Conclusions. Based on MC service mode, this paper
considered the profit fairness factor of supply chain members
and constructed a revenue-sharing contractmodel of logistics
service supply chain. Combined with examples to analyze
the effect of service customized level on optimal revenue-
sharing coefficient and fair entropy, this paper also raised an
intuitional conclusion and unforeseen result. In particular,
the intuitional conclusion has the following several aspects:

(1) Similar to the conclusion of Liu et al. [3], there exists
an optimal customized level range that makes the
LSI and FLSP get absolutely fair in a revenue-sharing
contract between only a single LSI and a single FLSP.
But, under the “one to 𝑁” condition, there exists an
interval of customized level value that maximizes the
fair entropy provided by the LSI and 𝑁 FLSPs but
cannot guarantee that the fair entropy is equal to 1.

(2) Under the situation of “one to one” and “one to 𝑁,”
with the increase of the customized level, the revenue-
sharing coefficient of the LSI showed a trend of first
increasing and then decreasing. This illuminates that
there exists an optimal customized level that makes
revenue-sharing coefficient reach the maximum.

(3) For “one to one” model in three-echelon LSSC, there
exists an interval of customized level value that max-
imizes the fair entropywhichmakes the LSI, the FLSP,
and the subcontractor get absolutely fair in a revenue-
sharing contract.

In addition, two unforeseen conclusions are put forward
in this paper:

(1) In the case of “one to one”, the interval of customized
level that can realize absolute fair is limited. Supply
chain fair entropy will decrease as the customized
level increases when the degree surpasses the maxi-
mum of the interval.

(2) In the case of “one to𝑁,” considering the fairness fac-
tor between FLSPs, the revenue distribution between
the LSI and each FLSP will not reach absolute fair. But
overall fair entropy will approach absolute fairness
when the customized level is in a specified range.

(3) Whether in the case of “one to one” or “one to 𝑁” in
two-echelon LSSC, the increase of price will benefit
the integrator but will reduce the fairness of the whole
supply chain.

(4) Under the situation of “one to one” model in three-
echelon LSSC, the revenue-sharing coefficient of the
LSI showed a trend of first increasing and then
decreasing, which means there is an optimal cus-
tomized level that makes the revenue-sharing coef-
ficient of the LSI reach its maximum. The revenue-
sharing coefficient of the FLSP between FLSP and
subcontractor showed a trend of increasing.

(5) Under the situation of “one to one” model in three-
echelon LSSC, the increase of price will benefit the
integrator but will reduce the fairness of the whole
supply chain.

7.2. Management Insights. The research conclusions of this
paper have important significance for the LSI. First, whether
in “one to one” or “one to 𝑁” when operating in reality,
the customized level can be restricted in a rational range by
consulting with the customer. This will impel the fairness
between the LSI and FLSP to the maximum and sustain the
revenue-sharing contract relationship. Second, in the case of
“one to 𝑁,” profits between the LSI and each FSLP cannot
achieve absolute fair; therefore, it is not necessary for the
LSI to achieve absolute fair with all FLSPs. Third, the LSI
can try to choose the FLSP with greater flexibility when the
customized level changes. For example, if the customer needs
time to be customized, the LSI can choose the FLSP that
has flexibility in time preferentially. Not only will it meet the
need of customers but also it is good for obtaining larger
supply chain total fair entropy between the LSI and FLSP and
for realizing the long-term coordination contract. Fourth, to
guarantee the fairness of all the members in LSSC, since the
increase of price will obviously benefit the integrator, FLSP
and subcontractor can participate into the price setting before
the revenue-sharing contract is signed.
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7.3. Research Limitation and Future Research Directions.
There are some defects in the revenue-sharing contracts
established in this paper. For example, this paper assumed
that the final price of the LSI’s service products for the
customer is a constant value, but, in fact, the higher the
customized level is the higher themarket pricemay be. Future
research can assume that the final price of service is related to
the level of customization.

Otherwise, in order to simplify themodel, this paper only
considered two stages of logistics service supply chain, but
there have always been three in reality. Future research can
try to extend the numbers of stages to three for enhancing
the utility of the model.

Appendices

A. The Calculation Details of Stackelberg
Game in (One to 𝑁) Model

This appendix contains the calculation details of𝑤
𝑖
and𝑄

𝑖
in

the “one to 𝑁” model.
For the Stackelberg game, the revenue expectation func-

tions of 𝑅 and 𝑆
𝑖
are as follows:

𝐸 (𝜋
𝑅𝑖
) = 𝑃
𝑖
(𝑄
𝑖
− 𝑏
𝑖
) − 𝑤
𝑖
𝑄
𝑖
− 𝐶
𝑅
𝑄
𝑖

− 𝐶
𝑢
(𝑃
𝑖
) (𝜇
𝑖
− 𝑄
𝑖
+ 𝑏
𝑖
) −

𝑤
𝑖

2

𝑘
𝑖
𝜎
𝑖
2
𝑏
𝑖
,

𝐸 (𝜋
𝑆𝑖
) = [𝑤

𝑖
− 𝐶
𝑆𝑖
] 𝑄
𝑖
+

𝑤
𝑖

2

𝑙
𝑖
𝜎
𝑖
2
𝑏
𝑖
.

(A.1)

Among them, 𝑏
𝑖
= ∫
𝑄𝑖

0
[𝑄
𝑖
− 𝐷
0𝑖

− 𝑘𝑡
𝑖
+ (1/2)ℎ𝑡

𝑖

2
]𝑓(𝑡
𝑖
)𝑑𝑡,

and 𝑠
𝑖
= 𝜕𝑏
𝑖
/𝜕𝑄
𝑖
.

So 𝑠
𝑖
= 𝐹(𝑄

𝑖
) + [(1/2)ℎ𝑄

𝑖

2
+ (1 − 𝑘)𝑄

𝑖
− 𝐷
0𝑖
]𝑓(𝑄
𝑖
), and

𝜕𝑆(𝑄
𝑖
)/𝜕𝑄
𝑖
= 1 − 𝑠

𝑖
.

First, to maximize the profits, the following first-order
condition should be satisfied:

𝜕𝐸 (𝜋
𝑆𝑖
)

𝜕𝑤
𝑖

= 𝑄
𝑖
+

2𝑤
𝑖

𝑙
𝑖
𝜎
𝑖
2
𝑏
𝑖
= 0. (A.2)

Obtaining the result, 𝑤
𝑖
= −𝑄
𝑖
𝑙
𝑖
𝜎
𝑖

2
/2𝑏
𝑖
.

Tomaximize the profits of eachmembers of supply chain,
the following first-order condition should be satisfied:

𝜕𝐸 (𝜋
𝑅𝑖
)

𝜕𝑄
𝑖

= [𝑃
𝑖
+ 𝐶
𝑢
(𝑃
𝑖
)] (1 − 𝑠

𝑖
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𝑅𝑖

− 𝑤
𝑖

−
𝑠
𝑖
𝑤
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2

𝑙
𝑖
𝜎
𝑖
2

= 0.

(A.3)

Then the second derivative is less than 0; namely,
𝜕
2
𝐸(𝜋
𝑅𝑖
)/𝜕𝑄
𝑖

2
< 0.

From formula (A.3), under the Stackelberg game, we can
obtain the optimal purchase volumes of capacity 𝑄

󸀠󸀠

𝑖
and 𝑤

󸀠󸀠

𝑖
,

and the optimal profits expectation of 𝑅 is 𝐸(𝜋
󸀠󸀠

𝑅𝑖
) and that of

𝑆
𝑖
is 𝐸(𝜋

󸀠󸀠

𝑆𝑖
).

Then the optimal logistics capacity volumes that the LSI
purchases from all FLSPs can be calculated: 𝑄󸀠󸀠 = ∑

𝑁

𝑖=1
𝑄
󸀠󸀠

𝑖
.

And the optimal expected total profits of 𝑅 are 𝐸(𝜋
󸀠󸀠

𝑅
) =

∑
𝑁

𝑖=1
𝐸(𝜋
󸀠󸀠

𝑅𝑖
). The expectation total profits of all FLSPs are

𝐸(𝜋
󸀠󸀠

𝑆
) = ∑
𝑁

𝑖=1
𝐸(𝜋
󸀠󸀠

𝑆𝑖
).

B. The Calculation Details of the Fair
Entropy between the LSI and the FLSP 𝑖 in
(One to 𝑁) Model

This appendix contains the calculation details of the fair
entropy between the LSI and FLSP 𝑖. Consider

𝜉
𝑅𝑖

=
Δ𝜃
𝑅𝑖

𝜑
𝑖
𝛾
𝑖
𝑇
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,
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𝑖
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𝑖
) 𝑇
𝑆𝑖

.
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Among them, 𝑇
𝑅𝑖
and 𝑇

𝑆𝑖
, respectively, indicate the total

cost of the LSI and that of FLSP in supply chain branch.
Introducing the entropy makes the following standard-

ized transformation:

𝜉
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.
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𝜉
𝑖
is average value and 𝜎

𝑖
is standardized deviation.

To eliminate the negative value, make a coordinate trans-
lation [44]: 𝜉󸀠󸀠

𝑅𝑖
= 𝐾
1
+ 𝜉
󸀠

𝑅𝑖
; 𝜉󸀠󸀠
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1
+ 𝜉
󸀠

𝑆𝑖
, 𝐾
1
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of coordinate translation and processes the normalization:
𝜆
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).

Obtain 𝜆
𝑅𝑖
and 𝜆

𝑆𝑖
and substitute them into the function

to calculate the fair entropy of the whole supply chain: 𝐻
1𝑖

=

−(1/ ln𝑚)∑
𝑚

𝑖=1
𝜆
𝑖
ln 𝜆
𝑖
. For 0 ≤ 𝐻

1𝑖
≤ 1, the fair entropy

between the LSI and FLSP 𝑖 in this model is

𝐻
1𝑖
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1

ln 2
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𝑅𝑖
ln 𝜆
𝑅𝑖

+ 𝜆
𝑆𝑖
ln 𝜆
𝑆𝑖
) . (B.3)

C. The Calculation Details of Stackelberg
Game in (One to One) Model of Three-
Echelon Logistics Service Supply Chains

First, to maximize the profits of subcontractor 𝐼, the first-
order condition should be satisfied:

𝜕𝐸 (𝜋
󸀠󸀠

𝐼
)

𝜕𝑤
2
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Then 𝑤
𝑆
= −𝑄𝑙

2
𝜎
2
/2𝑏.

Next, to maximize the profits of FLSP 𝑆, the first-order
condition should be satisfied:

𝜕𝐸 (𝜋
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/2𝑏.



Mathematical Problems in Engineering 19

Finally, to maximize the profits of the LSI, the first-order
condition should be satisfied:

𝜕𝐸 (𝜋
󸀠󸀠

𝑅
)

𝜕𝑄
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while satisfying the fact that second derivative is less than 0;
that is, 𝜕2𝐸(𝜋

󸀠󸀠

𝑅
)/𝜕𝑄
2
< 0.

We can obtain the optimal value of purchasing the
capacity𝑄

󸀠󸀠 under the Stackelberg game. And by substituting
𝑄
󸀠󸀠 into the expression of 𝑤

𝑅
and 𝑤

𝑆
, the corresponding 𝑤

󸀠󸀠

𝑅

and 𝑤
󸀠󸀠

𝑆
can be calculated.

D. The Calculation Details of the Fair
Entropy between 𝑅, 𝑆, and 𝐼 in (One to
One) Model of Three-Echelon Logistics
Service Supply Chains

Since the revenue-sharing coefficients are 𝑒
1
and 𝑒

2
, the

respective profit growth of the LSI, the FLSP, and subcontrac-
tor is
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Considering the different weights of the LSI and FLSP
and the FLSP and subcontractor in the supply chain, suppose
the weights of each are given. It is assumed that the weight
of the LSI is 𝛾

1
in the relationship of LSP and FLSP; thus

the weight of FLSP is 1 − 𝛾
1
in the relationship of LSP and

FLSP; the weight of the FLSP is 𝛾
2
in the relationship of FLSP

and subcontractor; thus the weight of the subcontractor is
1−𝛾
2
in the relationship of FLSP and subcontractor; then the

profit growth on unit-weight resource of the LSI, the FLSP,
and subcontractor is
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The total cost of the LSI is

𝑇
𝑅

= 𝑤
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1
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The total cost of the FLSP is
𝑇
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The total cost of the subcontractor is
𝑇
𝐼
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Then we introduce the concept of entropy:
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Among them,
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They are the average value and the standard deviation of
𝜀
󸀠

𝑖
.
Similar to the “one to one” model in two-echelon LSSC,

then, calculating the ratio 𝜆
𝑖
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After obtaining 𝜆
1
, 𝜆
2
, and 𝜆

3
, the fair entropy of whole

supply chain is

𝐻 = −
1

ln 3
(𝜆
1
ln 𝜆
1
+ 𝜆
2
ln 𝜆
2
+ 𝜆
3
ln 𝜆
3
) . (D.9)
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