2,563 research outputs found

    Novel Concept for Micro-Assembly of Optical Devices Using a Planar Motor System

    Get PDF
    Research and Development in recent years has led to first commercially available, magnetically levitated planar motor systems. Considering the advantages of such systems, they perfectly fit as a substitute for multi-axis fine positioning stages in high-volume productions. To address the need for solutions for high-volume packaging of optical devices, we present a novel concept for a micro-assembly station using a planar motor. To qualify a novel, vacuum-operatable planar motor system for our design, we conducted experiments regarding positioning repeatability, positioning noise, and dynamics on a pre-series system.DFG/Cluster of Excellence PhoenixD, EXC 2122/390833453/E

    Design of a six degree-of-freedom haptic hybrid platform manipultor

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Mechanical Engineering, Izmir, 2010Includes bibliographical references (leaves: 97-103)Text in English; Abstract: Turkish and Englishxv, 115 leavesThe word Haptic, based on an ancient Greek word called haptios, means related with touch. As an area of robotics, haptics technology provides the sense of touch for robotic applications that involve interaction with human operator and the environment. The sense of touch accompanied with the visual feedback is enough to gather most of the information about a certain environment. It increases the precision of teleoperation and sensation levels of the virtual reality (VR) applications by exerting physical properties of the environment such as forces, motions, textures. Currently, haptic devices find use in many VR and teleoperation applications. The objective of this thesis is to design a novel Six Degree-of-Freedom (DOF) haptic desktop device with a new structure that has the potential to increase the precision in the haptics technology. First, previously developed haptic devices and manipulator structures are reviewed. Following this, the conceptual designs are formed and a hybrid structured haptic device is designed manufactured and tested. Developed haptic device.s control algorithm and VR application is developed in Matlab© Simulink. Integration of the mechanism with mechanical, electromechanical and electronic components and the initial tests of the system are executed and the results are presented. According to the results, performance of the developed device is discussed and future works are addressed

    Ground Robotic Hand Applications for the Space Program study (GRASP)

    Get PDF
    This document reports on a NASA-STDP effort to address research interests of the NASA Kennedy Space Center (KSC) through a study entitled, Ground Robotic-Hand Applications for the Space Program (GRASP). The primary objective of the GRASP study was to identify beneficial applications of specialized end-effectors and robotic hand devices for automating any ground operations which are performed at the Kennedy Space Center. Thus, operations for expendable vehicles, the Space Shuttle and its components, and all payloads were included in the study. Typical benefits of automating operations, or augmenting human operators performing physical tasks, include: reduced costs; enhanced safety and reliability; and reduced processing turnaround time

    Integration of the hybrid-structure haptic interface: HIPHAD v1.0

    Get PDF
    Design, manufacturing, integration and initial test results of the 6-DoF haptic interface, HIPHAD v1.0, are presented in this paper. The hybrid haptic robot mechanism is composed of a 3-DoF parallel platform manipulator, R-Cube, for translational motions and a 3-DoF serial wrist mechanism for monitoring the rotational motions of the handle. The device is capable of displaying point-type of contact since only the R-Cube mechanism is actuated. The dimensions and the orientation of the R-Cube mechanism are reconfigured to comply with the requirements of the haptic system design criteria. The system has several advantages such as relatively trivial kinematical analysis, compactness and high stiffness. The integration of the system along with its mechanism, data acquisition card (DAQ), motor drivers, motors, position sensors, and computer control interface are outlined.Marie Curie International Reintegration Grant within the 7th European Community Framework Programm

    Controlling a contactless planar actuator with manipulator

    Get PDF
    An existing magnetically levitated planar actuator with manipulator has been studied and improved from a control point of view. This prototype consists of a magnetically levitated six-degree-of-freedom (6-DOF) planar actuator with moving magnets, with a 2-DOF manipulator on top of it. This system contains three different contactless technologies: contactless bearing and propulsion of the planar actuator, wireless powering of the manipulator, and wireless communication and control of the manipulator. The planar actuator (PA) consists of a Halbach magnet array, which is levitated and controlled in all six DOF’s above a stationary coil array. The PA is propelled in two horizontal translational DOF’s while the other four DOF’s are stabilized to accomplish a stiff bearing. Each active coil contributes to the production of forces and torques acting on the magnet array. Since the number of active coils is much larger than the number of DOF’s, the desired force production can be distributed over many coils. Therefore, a commutation algorithm has to be used to invert the mapping of the forces and torques exerted by the set of active coils as a function of the coil currents and the position and orientation of the translator. One method for linearization and decoupling of the forces and torques was developed in the past. The method is called direct wrench decoupling and guaranties minimal dissipation of energy. However, no constraints on the maximum current can be given. This study proposes two novel, norm-based commutation methods: l8-norm and clipped l2-norm based commutation. Both methods can put bounds on the maximum currents in the coils to prevent saturation of the current amplifiers. The first method focuses on minimization of the maximum current whereas the second method limits the peak current while it minimizes the power losses. Consequently, a higher acceleration of the translator can be achieved and/or less powerful (cheaper) current amplifiers can be utilized and/or fewer commutation errors arise. Only a long-stroke translational movement of the moving magnet planar actuators has been considered in the past. The possibility of a completely propelled and controlled rotation about the vertical axis instead of just stabilizing it for bearing has been analyzed in this thesis from a control point of view. Enhancing the planar actuator with a long-range rotation will increase its utility value and opens new application areas. Based on this investigation, a novel coil array with a triangular grid of rounded coils has been proposed for better controllability in any orientation of the PA. In addition, other coil and magnet topologies have been studied from a control point of view for their suitability for full rotation. The influence of different kinds of error-causes on the commutation precision has been studied. From this investigation, it has been found that the offsets of the measurement system have the highest influence on the precision of the commutation. Investigation of the convergence of the procedure for estimation and elimination of these offsets has been performed. Although it was not proven that the procedure could be applied on the whole workspace of the PA, the convergence has been shown at least for all the investigated points. From this investigation, convergence for any position in the workspace of the PA is expected. It was found that it is possible to use the procedure also with different topologies and with different commutations. A novel wireless link has been developed for the real-time control of a fast motion system. The wireless link communicates via infrared-light transceivers and the link has a delay and a packet-loss ratio almost indistinguishable from the wired connection for the bandwidth of the system up to several kilohertz. The clipped l2-norm based commutation method has been successfully tested on the experimental setup after improving the measurement system, the contactless energy transfer and the wireless communication. With a new, interferometer sensor system, a well-controlled PA with two long-stroke DOF’s has become available. Improved contactless energy transfer does not cause increased electromagnetic interference during switching between the primary coils any more and the wireless connection using the infrared link provides a reliable communication channel between the manipulator and the fixed world. Several control approaches have been tested on the experimental setup. Both, the classical PID control, Sliding-mode control and Iterative learning control have been implemented. Each controller brought better performance than the previous one. Also, a fourth-order trajectory and enhanced feedforward control helped to improve performance. Finally, the tracking errors, in comparison to the initial situation, were reduced by a factor 10 (and even more than by a factor 50 with deactivated contactless energy transfer) while the velocity and acceleration of the system were a factor 4 and 14, respectively, higher

    Concept of modular flexure-based mechanisms for ultra-high precision robot design

    Get PDF
    This paper introduces a new concept of modular flexure-based mechanisms to design industrial ultra-high precision robots, which aims at significantly reducing both the complexity of their design and their development time. This modular concept can be considered as a robotic Lego, where a finite number of building bricks is used to quickly build a high-precision robot. The core of the concept is the transformation of a 3-D design problem into several 2-D ones, which are simpler and well-mastered. This paper will first briefly present the theoretical bases of this methodology and the requirements of both types of building bricks: the active and the passive bricks. The section dedicated to the design of the active bricks will detail the current research directions, mainly the maximisation of the strokes and the development of an actuation sub-brick. As for the passive bricks, some examples will be presented, and a discussion regarding the establishment of a mechanical solution catalogue will conclude the section. Last, this modular concept will be illustrated with a practical example, consisting in the design of a 5-degree of freedom ultra-high precision robot

    Synthesis and Validation of Vision Based Spacecraft Navigation

    Get PDF

    Contactless Planar Actuator with Manipulator

    Get PDF
    The accuracy and reliability of high-precision machines is compromised by friction and disturbances due to cables to moving machine parts. These problems can be solved by applying three contactless techniques in one system: contactless generation of forces and torques, contactless energy transfer to a moving load and wireless control. This paper presents an overview of the research performed at Eindhoven University of Technology to create a contactless planar actuator with manipulator, a system which combines all three contactless techniques
    • …
    corecore