7,545 research outputs found

    An approximate approach for the joint problem of level of repair analysis and spare parts stocking

    Get PDF
    For the spare parts stocking problem, generally METRIC type methods are used in the context of capital goods. A decision is assumed on which components to discard and which to repair upon failure, and where to perform repairs. In the military world, this decision is taken explicitly using the level of repair analysis (LORA). Since the LORA does not consider the availability of the capital goods, solving the LORA and spare parts stocking problems sequentially may lead to suboptimal solutions. Therefore, we propose an iterative algorithm. We compare its performance with that of the sequential approach and a recently proposed, so-called integrated algorithm that finds optimal solutions for twoechelon, single-indenture problems. On a set of such problems, the iterative algorithm turns out to be close to optimal. On a set of multi-echelon, multi-indenture problems, the iterative approach achieves a cost reduction of 3%on average (35%at maximum) as compared to the sequential approach. Its costs are only 0.6 % more than those of the integrated algorithm on average (5 % at maximum). Considering that the integrated algorithm may take a long time without guaranteeing optimality, we believe that the iterative algorithm is a good approach. This result is further strengthened in a case study, which has convinced Thales Nederland to start using the principles behind our algorithm

    An optimal approach for the joint problem of level of repair analysis and spare parts stocking

    Get PDF
    We propose a method that can be used when deciding on how to maintain capital goods, given a product design and the layout of a repair network. Capital goods are physical systems that are used to produce products or services. They are expensive and technically complex and have high downtime costs. Examples are manufacturing equipment, defense systems, and medical devices

    An iterative method for the simultaneous optimization of repair decisions and spare parts stocks

    Get PDF
    In the development process of a capital good, it should be decided how to maintain it once it is in the field. The level of repair analysis (LORA) is used to answer the questions: 1) which components to repair upon failure, and which to discard, 2) at which locations in the repair network to perform the repairs, and 3) at which locations to deploy resources, such as repair equipment. Next, it should be decided what amount of spare parts to store at each location in the network in order to guarantee a certain availability of the product. Usually, the LORA and the spare parts stocking problem are solved sequentially. However, solving the LORA first can lead to high spare parts costs. Therefore, we propose an iterative approach to solve the two problems jointly. We find that the total costs are lowered with 3.2% on average and almost 35% at maximum in our experiments. A cost reduction of a few percent may be worth hundreds of thousands of euros over the life cycle of a capital good

    A Minimum Cost Flow model for Level of Repair Analysis

    Get PDF
    Given a product design and a repair network for capital goods, a level of repair analysis determines for each component in the product (1) whether it should be discarded or repaired upon failure and (2) at which location in the repair network to do this. In this paper, we show how the problem can be modelled as a minimum cost ow problem with side constraints. Advantages are that (1) solving our model requires less computational effort than solving existing models and (2) we achieve a high model exibility, i.e., many practical extensions can be added. Furthermore, we analyse the added value of modelling the exact structure of the repair network, instead of aggregating all data per echelon as is common in the literature. We show that in some cases, cost savings of over 7% can be achieved. We also show when it is sufficient to model the repair network by echelons only, which requires less input data

    Practical extensions to the level of repair analysis

    Get PDF
    The level of repair analysis (lora) gives answers to three questions that are posed when deciding on how to maintain capital goods: 1) which components to repair upon failure and which to discard, 2) at which locations in the repair network to perform each type of repairs, and 3) at which locations in the network to deploy resources, such as test equipment. The goal is to achieve the lowest possible life cycle costs. Various models exist for the lora problem. However, these models tend to be restrictive in that specic business situations cannot be incorporated, for example, having repair equipment with a capacity restriction or the occurrence of unsuccessful repairs.We discuss and model various practically relevant extensions to an existing minimum cost \ud ow formulation for the lora problem. We show the added value of these model renements in an extensive numerical experiment

    A development of logistics management models for the Space Transportation System

    Get PDF
    A new analytic queueing approach was described which relates stockage levels, repair level decisions, and the project network schedule of prelaunch operations directly to the probability distribution of the space transportation system launch delay. Finite source population and limited repair capability were additional factors included in this logistics management model developed specifically for STS maintenance requirements. Data presently available to support logistics decisions were based on a comparability study of heavy aircraft components. A two-phase program is recommended by which NASA would implement an integrated data collection system, assemble logistics data from previous STS flights, revise extant logistics planning and resource requirement parameters using Bayes-Lin techniques, and adjust for uncertainty surrounding logistics systems performance parameters. The implementation of these recommendations can be expected to deliver more cost-effective logistics support

    Joint optimization of level of repair analysis and spare parts stocks

    Get PDF
    In the field of service logistics for capital goods, generally, metric type methods are used to decide where to stock spare parts in a multi-echelon repair network such that a target availability of the capital goods is achieved. These methods generate a trade-off curve of spares investment costs versus backorders. Backorders of spare parts lead to unavailability of the capital goods. Inputs in the spare parts stocking problem are decisions on 1) which components to repair upon failure and which to discard, and 2) at which locations in the repair network to perform the repairs and discards. The level of repair analysis (lora) can be used to make such decisions in conjunction with the decisions 3) at which locations to deploy resources, such as test equipment, that may be required to repair, discard, or move components. Since these decisions significantly impact the spare parts investment costs, we propose to solve the lora and spare parts stocking problems jointly. We design an algorithm that finds efficient points, i.e., lower backorder levels cannot be achieved against the same (or lower) costs. In a computational experiment, we show that solving the joint problem is worthwhile, since we achieve a cost reduction of 5.1% on average and over 43% at maximum compared with using a sequential approach of first solving a lora and then the spare parts stocking problem
    corecore