382,554 research outputs found

    Manufacturing knowledge reuse for product design

    Get PDF
    In today’s world there is ever increasing pressure to bring products to market in a quicker and more time-ly fashion that fulfill customers’ needs and are delivered on budget. One way to aid such acceleration of the design and development process is to effectively share and reuse manufacturing knowledge in an ef-fort to bring about product based interoperability. This paper reports upon the work being carried out in the SAMULET research programme that addresses such factors. It focuses upon (i) how the sources of in-formation and knowledge were recognized, (ii) the definition and categorisation of knowledge and (iii) the potential routes for the reuse of manufacturing knowledge. The research approach is currently being developed to help augment a supportive information and knowledge sharing environment and bring about a more integrated development process within a high tech aerospace company

    Quality by Design Procedure for Continuous Pharmaceutical Manufacturing: An Integrated Flowsheet Model Approach

    Get PDF
    Pharmaceutical manufacturing is crucial to global healthcare and requires a higher, more consistent level of quality than any other industry. Yet, the traditional pharmaceutical batch manufacturing has remained largely unchanged in the last fifty years due to high R&D costs, shorter patent durations, and regulatory uncertainty. This has led regulatory bodies to promote modernization of manufacturing process to continuous pharmaceutical manufacturing (CPM) by introducing new methodologies including quality by design, design space, and process analytical technology (PAT). This represents a shift away from the traditional pharmaceutical manufacturing way of thinking towards a risk based approach that promotes increased product and process knowledge through a data-rich environment. While both literature and regulatory bodies acknowledge the need for modernization, manufacturers have been slow to modernize due to uncertainty and lack of confidence in the applications of these methodologies. This paper aims to describe the current applications of QbD principles in literature and the current regulatory environment to identify gaps in literature through leveraging regulatory guidelines and CPM literature. To aid in closing the gap between QbD theory and QbD application, a QbD algorithm for CPM using an integrated flowsheet models is also developed and analyzed. This will help to increase manufacturing confidence in CPM by providing answers to questions about the CPM business case, applications of QbD tools, process validation and sensitivity, and process and equipment characteristics. An integrated flowsheet model will aid in the decision-making process and process optimization, breaking away from ex silico methods extensively covered in literature

    The Unexplored Effect of Skills and Technology on Firms' Performance

    Get PDF
    The aim of this paper is to add new findings to the knowledge based view of the firm, where the cross-learning ability of individuals and organizations plays a fundamental role in the determination of firms' superior performances. Collective, non formal - informal, formal types of learning (learning drivers) contribute to shape the competitiveness of firms, especially in the present knowledge-based economy, where the necessity to respond effectively to frequent external shock (demand, technology, competitive environment driven) emphasizes the importance of being flexible and quickly adaptive. Nevertheless, focusing on learning capacities, and particularly on human skills, often leads to forget or ignore industry effects, such as innovative intensity, which increase the explanatory power of the learning drivers. This work explores the conjoint effect of learning drivers and innovative intensity on firms' performance by showing some evidence from statistical data analysis on the Danish IDA (Integrated Database for Labour Market Research). A sample of firms belonging to the manufacturing industry is studied using data related to the year 1999. The paper proceeds as follows: firstly, the role and relevance of human resources in the determination of firm's performance is presented. Secondly, a missing ring in the knowledge based view of the firm is detected: the R&D investments intensity. Thirdly, the data analysis process and the methodology adopted are illustrated. Finally, the results are presented and discussed.Human capital; innovtive intensity; knowledge; learning; manufacturing; performance

    Embedding Computer Simulation Based Classroom Activities to Enhance the Learning Experience for Manufacturing Systems

    Get PDF
    In recent time, manufacturing environment are bracing higher end technologies to achieve high productivity, efficiency and effectiveness. Due to the adoption of the sophisticated technologies, the system is becoming very complex and stochastic. Moreover, the manufacturing system is interconnected among its different subsystems and components, which cannot be described only through the theoretical explanation. Here, computer simulation can be integrated to design and visualize the stochastic and complex system. This paper uses the advantage of simulation to describe a series classroom activity using SIMIO software, which are deployed in industrial systems simulation course in the University of Texas at El Paso. Besides, the authors show a noble approach to demonstrate the simulation using the virtual reality (VR) technology in Unity platform. Integration of these simulation based classroom activities provide three-fold benefit to students’ learning process; (1) it provides an effective way to evaluate the design and operational performance of manufacturing systems, (2) students can experience the real time situation by imitating a manufacturing environment, and (3) it motivates the students to be engaged in the classroom activities besides learning the theoretical knowledge

    Does the interaction between the knowledge management process and sustainable development practices boost corporate green innovation?

    Get PDF
    Green innovations are being deployed in manufacturing industries to promote organisational sustainability by embracing sustainable development practices (SDPs). However, little is known about how corporate green innovation (CGI) is influenced by the knowledge management process (KMP). To fill this gap, we have developed a multidimensional framework based on the resource-based view (RBV) theory that provides a foundation for sculpturing the process by which KMP was observed to capture and sustain CGI through SDPs. Data were collected from 393 respondents of large- and medium-sized manufacturing corporations in Pakistan and analysed using partial least squares structural equation modelling (SEM) and fuzzy set qualitative comparative analysis (fsQCA). This study provides several key findings. First, KMP dimensions (acquisition, dissemination and application) significantly improve the SDPs' dimensions (environment, economic and social). Second, SDP dimensions play a significant role in achieving CGI. Third, the implementation of SDPs partially mediates the relationship between the KMP and CGI. Furthermore, the fsQCA results signify the robustness of all integrated constructs. Our results demonstrate that investing in and adopting the latest technologies and sustainable practices are not only valuable for long-term success but the soft concerns such as managing organisational knowledge are also vital in the current knowledge-based economy. Finally, in light of our findings, theoretical and managerial implications, with propositions for future studies, have been provided at the end of the paper

    The Integrated Realization of Materials, Products and Associated Manufacturing Processes

    Get PDF
    Problem: A materials design revolution is underway in the recent past where the focus is to design (not select) the material microstructure and processing paths to achieve multiple property or performance requirements that are often in conflict. The advancements in computer simulations have resulted in the speeding up of the process of discovering new materials and has paved way for rapid assessment of process-structure-property-performance relationships of materials, products, and processes. This has led to the simulation-based design of material microstructure (microstructure-mediated design) to satisfy multiple property or performance goals of the product/process/system thereby replacing the classical material design and selection approaches. The foundational premise for this dissertation is that systems-based materials design techniques offer the potential for tailoring materials, their processing paths and the end products that employ these materials in an integrated fashion for challenging applications to satisfy conflicting product and process level property and performance requirements. The primary goal in this dissertation is to establish some of the scientific foundations and tools that are needed for the integrated realization of materials, products and manufacturing processes using simulation models that are typically incomplete, inaccurate and not of equal fidelity by managing the uncertainty associated. Accordingly, the interest in this dissertation lies in establishing a systems-based design architecture that includes system-level synthesis methods and tools that are required for the integrated design of complex materials, products and associated manufacturing processes starting from the end requirements. Hence the primary research question: What are the theoretical, mathematical and computational foundations needed for establishing a comprehensive systems-based design architecture to realize the integrated design of the product, its environment, manufacturing processes and material as a system? Major challenges to be addressed here are: a) integration of models (material, process and product) to establish processing-structure-property-performance relationships, b) goal-oriented inverse design of material microstructures and processing paths to meet multiple conflicting performance/property requirements, c) robust concept exploration by managing uncertainty across process chains and d) systematic, domain-independent, modular, reconfigurable, reusable, computer interpretable, archivable, and multi-objective decision support in the early stages of design to different users. Approach: In order to address these challenges, the primary hypothesis in this dissertation is to establish the theoretical, mathematical and computational foundations for: 1) forward material, product and process workflows through systematic identification and integration of models to define the processing-structure-property-performance relationships; 2) a concept exploration framework supporting systematic formulation of design problems facilitating robust design exploration by bringing together robust design principles and multi-objective decision making protocols; 3) a generic, goal-oriented, inverse decision-based design method that uses 1) and 2) to facilitate the systems-based inverse design of material microstructures and processing paths to meet multiple product level performance/property requirements, thereby generating the problem-specific inverse decision workflow; and 4) integrating the workflows with a knowledge-based platform anchored in modeling decision-related knowledge facilitating capture, execution and reuse of the knowledge associated with 1), 2) and 3). This establishes a comprehensive systems-based design architecture to realize the integrated design of the product, its environment, manufacturing processes and material as a system. Validation: The systems-based design architecture for the integrated realization of materials, products and associated manufacturing processes is validated using the validation-square approach that consists of theoretical and empirical validation. Empirical validation of the design architecture is carried out using an industry driven problem namely the ‘Integrated Design of Steel (Material), Manufacturing Processes (Rolling and Cooling) and Hot Rolled Rods (Product) for Automotive Gears’. Specific sub-problems are formulated within this problem domain to address various research questions identified in this dissertation. Contributions: The contributions from the dissertation are categorized into new knowledge in four research domains: a) systematic model integration (vertical and horizontal) for integrated material and product workflows, b) goal-oriented, inverse decision support, c) robust concept exploration of process chains with multiple conflicting goals and d) knowledge-based decision support for rapid and robust design exploration in simulation-based integrated material, product and process design. The creation of new knowledge in this dissertation is associated with the development of a systems-based design architecture involving systematic function-based approach of formulating forward material workflows, a concept exploration framework for systematic design exploration, an inverse decision-based design method, and robust design metrics, all integrated with a knowledge-based platform for decision support. The theoretical, mathematical and computational foundations for the design architecture are proposed in this dissertation to facilitate rapid and robust exploration of the design and solution spaces to identify material microstructures and processing paths that satisfy conflicting property and performance for complex materials, products and processes by managing uncertainty

    Innovation in sustainable manufacturing education

    Get PDF
    Part of: Seliger, Günther (Ed.): Innovative solutions : proceedings / 11th Global Conference on Sustainable Manufacturing, Berlin, Germany, 23rd - 25th September, 2013. - Berlin: Universitätsverlag der TU Berlin, 2013. - ISBN 978-3-7983-2609-5 (online). - http://nbn-resolving.de/urn:nbn:de:kobv:83-opus4-40276. - pp. 9-16.Sustainable value creation entails generating value for all stakeholders from economic, environmental and social perspectives. In a manufacturing context, creating sustainable value requires product, process and systems level innovations to enable near-perpetual closed-loop material flow across multiple life-cycles; it also requires understanding the complex interactions of the socio-technical systems with the natural environment for emergent synthesis so sustainable value creation can occur harmoniously and continuously. However, current educational curricula with traditional disciplines is fragmented and do not represent the multidisciplinarity or the integration needs; it is now necessary to work at the interface of the various disciplines to address the complex issues that are brought about through sustainability. Thus, to create sustainable value through sustainable manufacturing will require transformational and innovative reforms in education with an overall paradigm shift to provide the future generation of engineers, scientists and managers the necessary technical knowledge, skills and capabilities. This paper presents recent trends in developing such innovative educational programs in sustainable manufacturing. Also, the technological challenges posed by the need for implementing viable innovative sustainable manufacturing educational programs inevitably require fundamental studies on total life-cycle products, closed-loop manufacturing processes and integrated production systems extending beyond to the entire supply chain operations. This paper is aimed at tackling these significant challenges by essentially developing sustainable value propositions for all forms of educational programs (formal degrees and certificate level programs, professional/continuing education programs, short courses and web-based interactive learning programs, etc.) to incorporate the new knowledge needed to promote value-added sustainable manufacturing at product, process and system levels

    Enhanced integrated modelling approach to reconfiguring manufacturing enterprises

    Get PDF
    Dynamism and uncertainty are real challenges for present day manufacturing enterprises (MEs). Reasons include: an increasing demand for customisation, reduced time to market, shortened product life cycles and globalisation. MEs can reduce competitive pressure by becoming reconfigurable and change-capable. However, modern manufacturing philosophies, including agile and lean, must complement the application of reconfigurable manufacturing paradigms. Choosing and applying the best philosophies and techniques is very difficult as most MEs deploy complex and unique configurations of processes and resource systems, and seek economies of scope and scale in respect of changing and distinctive product flows. It follows that systematic methods of achieving model driven reconfiguration and interoperation of component based manufacturing systems are required to design, engineer and change future MEs. This thesis, titled Enhanced Integrated Modelling Approach to Reconfiguring Manufacturing Enterprises , introduces the development and prototyping a model-driven environment for the design, engineering, optimisation and control of the reconfiguration of MEs with an embedded capability to handle various types of change. The thesis describes a novel systematic approach, namely enhanced integrated modelling approach (EIMA), in which coherent sets of integrated models are created that facilitates the engineering of MEs especially their production planning and control (PPC) systems. The developed environment supports the engineering of common types of strategic, tactical and operational processes found in many MEs. The EIMA is centred on the ISO standardised CIMOSA process modelling approach. Early study led to the development of simulation models during which various CIMOSA shortcomings were observed, especially in its support for aspects of ME dynamism. A need was raised to structure and create semantically enriched models hence forming an enhanced integrated modelling environment. The thesis also presents three industrial case examples: (1) Ford Motor Company; (2) Bradgate Furniture Manufacturing Company; and (3) ACM Bearings Company. In order to understand the system prior to realisation of any PPC strategy, multiple process segments of any target organisation need to be modelled. Coherent multi-perspective case study models are presented that have facilitated process reengineering and associated resource system configuration. Such models have a capability to enable PPC decision making processes in support of the reconfiguration of MEs. During these case studies, capabilities of a number of software tools were exploited such as Arena®, Simul8®, Plant Simulation®, MS Visio®, and MS Excel®. Case study results demonstrated effectiveness of the concepts related to the EIMA. The research has resulted in new contributions to knowledge in terms of new understandings, concepts and methods in following ways: (1) a structured model driven integrated approach to the design, optimisation and control of future reconfiguration of MEs. The EIMA is an enriched and generic process modelling approach with capability to represent both static and dynamic aspects of an ME; and (2) example application cases showing benefits in terms of reduction in lead time, cost and resource load and in terms of improved responsiveness of processes and resource systems with a special focus on PPC; (3) identification and industrial application of a new key performance indicator (KPI) known as P3C the measuring and monitoring of which can aid in enhancing reconfigurability and responsiveness of MEs; and (4) an enriched modelling concept framework (E-MUNE) to capture requirements of static and dynamic aspects of MEs where the conceptual framework has the capability to be extended and modified according to the requirements. The thesis outlines key areas outlining a need for future research into integrated modelling approaches, interoperation and updating mechanisms of partial models in support of the reconfiguration of MEs

    3D-based Advanced Machine Service Support

    Get PDF
    In the face of today's unpredictable and fluctuating global market, there have been trends in industry towards wider adoption of more advanced and flexible new generation manufacturing systems. These have brought about new challenges to manufacturing equipment builders/suppliers in respect of satisfying ever-increasing customers' requirements for such advanced manufacturing systems. To stay competitive, in addition to supplying high quality equipment, machine builders/suppliers must also be capable of providing their customers with cost-effective, efficient and comprehensive service support, throughout the equipment's lifecycle. This research study has been motivated by the relatively unexplored potential of integrating 3D virtual technology with various machine service support tools/techniques to address the aforementioned challenges. The hypothesis formulated for this study is that a 3D-based virtual environment can be used as an integration platform to improve service support for new generation manufacturing systems. In order to ensure the rigour of the study, it has been initiated with a two-stage (iterative) literature review, consisting of: a preliminary review for the identification of practical problems/main issues related to the area of machine service support and in-depth reviews for the identification of research problems/questions and potential solutions. These were then followed by iterations of intensive research activities, consisting of: requirements identification, concept development, prototype implementation, testing and exploration, reflection and feedback. The process has been repeated and revised continuously until satisfactory results, required for answering the identified research problems/questions, were obtained. The main focus of this study is exploring how a 3D-based virtual environment can be used as an integration platform for supporting a more cost-effective and comprehensive strategy for improving service support for new generation manufacturing systems. One of the main outcomes of this study is the proposal of a conceptual framework for a novel 3D-based advanced machine service support strategy and a reference architecture for a corresponding service support system, for allowing machine builders/suppliers to: (1) provide more cost-effective remote machine maintenance support, and (2) provide more efficient and comprehensive extended service support during the equipment's life cycle. The proposed service support strategy advocates the tight integration of conventional (consisting of mainly machine monitoring, diagnostics, prognostics and maintenance action decision support) and extended (consisting of mainly machine re-configuration, upgrade and expansion support) service support functions. The proposed service support system is based on the integration of a 3D-based virtual environment with the equipment control system, a re-configurable automated service support system, coupled with a maintenance-support-tool/strategy support environment and an equipment re-configuration/upgrade/expansion support environment, in a network/lntenet framework. The basic concepts, potential benefits and limitations of the proposed strategy/ system have been explored via a prototype based on a laboratory-scale test bed. The prototype consists of a set of integrated modular network-ready software tools consisting of: (1) an integrated 20/30 visualisation and analysis module, (2) support tools library modules, (3) communication modules and (4) a set of modular and re-configurable automated data logging, maintenance and re-configuration support modules. A number of test cases based on various machine service support scenarios, have been conducted using the prototype. The experimentation has shown the potential and feasibility (technical implementation aspects) of the proposed 3D-based approach. This research study has made an original contribution to knowledge in the field of machine service support. It has contributed a novel approach of using a 3D-based virtual environment as an integration platform for improving the capability of machine builders/suppliers in providing more cost-effective and comprehensive machine service support for complex new generation manufacturing systems. Several important findings have resulted from this work in particular with respect to how various 20/30 visualisation environments are integrated with machine service support tools/techniques for improving service support for complex manufacturing systems. A number of aspects have also been identified for future work
    corecore