21,998 research outputs found
Efficient DSP and Circuit Architectures for Massive MIMO: State-of-the-Art and Future Directions
Massive MIMO is a compelling wireless access concept that relies on the use
of an excess number of base-station antennas, relative to the number of active
terminals. This technology is a main component of 5G New Radio (NR) and
addresses all important requirements of future wireless standards: a great
capacity increase, the support of many simultaneous users, and improvement in
energy efficiency. Massive MIMO requires the simultaneous processing of signals
from many antenna chains, and computational operations on large matrices. The
complexity of the digital processing has been viewed as a fundamental obstacle
to the feasibility of Massive MIMO in the past. Recent advances on
system-algorithm-hardware co-design have led to extremely energy-efficient
implementations. These exploit opportunities in deeply-scaled silicon
technologies and perform partly distributed processing to cope with the
bottlenecks encountered in the interconnection of many signals. For example,
prototype ASIC implementations have demonstrated zero-forcing precoding in real
time at a 55 mW power consumption (20 MHz bandwidth, 128 antennas, multiplexing
of 8 terminals). Coarse and even error-prone digital processing in the antenna
paths permits a reduction of consumption with a factor of 2 to 5. This article
summarizes the fundamental technical contributions to efficient digital signal
processing for Massive MIMO. The opportunities and constraints on operating on
low-complexity RF and analog hardware chains are clarified. It illustrates how
terminals can benefit from improved energy efficiency. The status of technology
and real-life prototypes discussed. Open challenges and directions for future
research are suggested.Comment: submitted to IEEE transactions on signal processin
Sub-Nyquist Sampling: Bridging Theory and Practice
Sampling theory encompasses all aspects related to the conversion of
continuous-time signals to discrete streams of numbers. The famous
Shannon-Nyquist theorem has become a landmark in the development of digital
signal processing. In modern applications, an increasingly number of functions
is being pushed forward to sophisticated software algorithms, leaving only
those delicate finely-tuned tasks for the circuit level.
In this paper, we review sampling strategies which target reduction of the
ADC rate below Nyquist. Our survey covers classic works from the early 50's of
the previous century through recent publications from the past several years.
The prime focus is bridging theory and practice, that is to pinpoint the
potential of sub-Nyquist strategies to emerge from the math to the hardware. In
that spirit, we integrate contemporary theoretical viewpoints, which study
signal modeling in a union of subspaces, together with a taste of practical
aspects, namely how the avant-garde modalities boil down to concrete signal
processing systems. Our hope is that this presentation style will attract the
interest of both researchers and engineers in the hope of promoting the
sub-Nyquist premise into practical applications, and encouraging further
research into this exciting new frontier.Comment: 48 pages, 18 figures, to appear in IEEE Signal Processing Magazin
Phase ambiguity resolution for offset QPSK modulation systems
A demodulator for Offset Quaternary Phase Shift Keyed (OQPSK) signals modulated with two words resolves eight possible combinations of phase ambiguity which may produce data error by first processing received I(sub R) and Q(sub R) data in an integrated carrier loop/symbol synchronizer using a digital Costas loop with matched filters for correcting four of eight possible phase lock errors, and then the remaining four using a phase ambiguity resolver which detects the words to not only reverse the received I(sub R) and Q(sub R) data channels, but to also invert (complement) the I(sub R) and/or Q(sub R) data, or to at least complement the I(sub R) and Q(sub R) data for systems using nontransparent codes that do not have rotation direction ambiguity
Ring-resonator-based wavelength filters
Microring resonators (MR) represent a class of filters with characteristics very similar to those of Fabry–Perot filters. However, they offer the advantage that the injected and reflected signals are separated in individual waveguides, and in addition, their design does not require any facets or gratings and is thus particularly simple. MRs evolved from the fields of fibre optic ring resonators and micron scale droplets. Their inherently small size (with typical diameters in the range between several to tens of micrometres), their filter characteristics and their potential for being used in complex and flexible configurations make these devices particularly attractive for integrated optics or VLSI photonics applications.\ud
MRs for filter applications, delay lines, as add/drop multiplexers, and modulators will be covered in detail in this chapter, while other applications such as in optical sensing, in spectroscopy or for coherent light generation (MR lasers) are outside the scope of this chapter.\ud
This chapter focuses primarily on 4-port microrings, while 2-port devices will play a minor role here and are covered in more detail in Chap. 9. The present chapter starts with design considerations, the functional behaviour, and key characteristics of a single microring resonator and continues with the design of cascaded MRs allowing the implementation of higher order filters. Finally, complex devices like add-drop filters, tuneable dispersion compensators, all-optical wavelength converters, and tuneable cross-connects are treated.\u
Digital control of the Kuiper Airborne Observatory telescope
The feasibility of using a digital controller to stabilize a telescope mounted in an airplane is investigated. The telescope is a 30 in. infrared telescope mounted aboard a NASA C-141 aircraft known as the Kuiper Airborne Observatory. Current efforts to refurbish the 14-year-old compensation system have led to considering a digital controller. A typical digital controller is modeled and added into the telescope system model. This model is simulated on a computer to generate the Bode plots and time responses which determine system stability and performance parameters. Important aspects of digital control system hardware are discussed. A summary of the findings shows that a digital control system would result in satisfactory telescope performance
CMOS-3D smart imager architectures for feature detection
This paper reports a multi-layered smart image sensor architecture for feature extraction based on detection of interest points. The architecture is conceived for 3-D integrated circuit technologies consisting of two layers (tiers) plus memory. The top tier includes sensing and processing circuitry aimed to perform Gaussian filtering and generate Gaussian pyramids in fully concurrent way. The circuitry in this tier operates in mixed-signal domain. It embeds in-pixel correlated double sampling, a switched-capacitor network for Gaussian pyramid generation, analog memories and a comparator for in-pixel analog-to-digital conversion. This tier can be further split into two for improved resolution; one containing the sensors and another containing a capacitor per sensor plus the mixed-signal processing circuitry. Regarding the bottom tier, it embeds digital circuitry entitled for the calculation of Harris, Hessian, and difference-of-Gaussian detectors. The overall system can hence be configured by the user to detect interest points by using the algorithm out of these three better suited to practical applications. The paper describes the different kind of algorithms featured and the circuitry employed at top and bottom tiers. The Gaussian pyramid is implemented with a switched-capacitor network in less than 50 μs, outperforming more conventional solutions.Xunta de Galicia 10PXIB206037PRMinisterio de Ciencia e Innovación TEC2009-12686, IPT-2011-1625-430000Office of Naval Research N00014111031
A Scalable Correlator Architecture Based on Modular FPGA Hardware, Reuseable Gateware, and Data Packetization
A new generation of radio telescopes is achieving unprecedented levels of
sensitivity and resolution, as well as increased agility and field-of-view, by
employing high-performance digital signal processing hardware to phase and
correlate large numbers of antennas. The computational demands of these imaging
systems scale in proportion to BMN^2, where B is the signal bandwidth, M is the
number of independent beams, and N is the number of antennas. The
specifications of many new arrays lead to demands in excess of tens of PetaOps
per second.
To meet this challenge, we have developed a general purpose correlator
architecture using standard 10-Gbit Ethernet switches to pass data between
flexible hardware modules containing Field Programmable Gate Array (FPGA)
chips. These chips are programmed using open-source signal processing libraries
we have developed to be flexible, scalable, and chip-independent. This work
reduces the time and cost of implementing a wide range of signal processing
systems, with correlators foremost among them,and facilitates upgrading to new
generations of processing technology. We present several correlator
deployments, including a 16-antenna, 200-MHz bandwidth, 4-bit, full Stokes
parameter application deployed on the Precision Array for Probing the Epoch of
Reionization.Comment: Accepted to Publications of the Astronomy Society of the Pacific. 31
pages. v2: corrected typo, v3: corrected Fig. 1
- …
