6 research outputs found

    Joint Target Tracking and Recognition Using Shape-based Generative Model

    Get PDF
    Recently a generative model that combines both of identity and view manifolds was proposed for multi-view shape modeling that was originally used for pose estimation and recognition of civilian vehicles from image sequences. In this thesis, we extend this model to both civilian and military vehicles, and examine its effectiveness for real-world automated target tracking and recognition (ATR) applications in both infrared and visible image sequences. A particle filter-based ATR algorithm is introduced where the generative model is used for shape interpolation along both the view and identity manifolds. The ATR algorithm is tested on the newly released SENSIAC (Military Sensing Information Analysis Center) infrared database along with some visible-band image sequences. Overall tracking and recognition performance is evaluated in terms of the accuracy of 3D position/pose estimation and target classification.</School of Electrical & Computer Engineerin

    Sub pixel analysis and processing of sensor data for mobile target intelligence information and verification

    Get PDF
    This dissertation introduces a novel process to study and analyze sensor data in order to obtain information pertaining to mobile targets at the sub-pixel level. The process design is modular in nature and utilizes a set of algorithmic tools for change detection, target extraction and analysis, super-pixel processing and target refinement. The scope of this investigation is confined to a staring sensor that records data of sub-pixel vehicles traveling horizontally across the ground. Statistical models of the targets and background are developed with noise and jitter effects. Threshold Change Detection, Duration Change Detection and Fast Adaptive Power Iteration (FAPI) Detection techniques are the three methods used for target detection. The PolyFit and FermiFit are two tools developed and employed for target analysis, which allows for flexible processing. Tunable parameters in the detection methods, along with filters for false alarms, show the adaptability of the procedures. Super-pixel processing tools are designed, and Refinement Through Tracking (RTT) techniques are investigated as post-processing refinement options. The process is tested on simulated datasets, and validated with sensor datasets obtained from RP Flight Systems, Inc

    Vehicle Tracking and Classification via 3D Geometries for Intelligent Transportation Systems

    Get PDF
    In this dissertation, we present generalized techniques which allow for the tracking and classification of vehicles by tracking various Point(s) of Interest (PoI) on a vehicle. Tracking the various PoI allows for the composition of those points into 3D geometries which are unique to a given vehicle type. We demonstrate this technique using passive, simulated image based sensor measurements and three separate inertial track formulations. We demonstrate the capability to classify the 3D geometries in multiple transform domains (PCA & LDA) using Minimum Euclidean Distance, Maximum Likelihood and Artificial Neural Networks. Additionally, we demonstrate the ability to fuse separate classifiers from multiple domains via Bayesian Networks to achieve ensemble classification
    corecore