78 research outputs found

    Unibo-BP: an innovative free software implementation of Bundle Protocol Version 7 (RFC 9171)

    Get PDF
    The BP (Bundle Protocol) version 7 has been recently standardized by IETF in RFC 9171, but it is the whole DTN (Delay-/Disruption-Tolerant Networking) architecture, of which BP is the core, that is gaining a renewed interest, thanks to its planned adoption in future space missions. This is obviously positive, but at the same time it seems to make space agencies more interested in deployment than in research, with new BP implementations that may challenge the central role played until now by the historical BP reference implementations, such as ION and DTNME. To make Unibo research on DTN independent of space agency decisions, the development of an internal BP implementation was in order. This is the goal of this thesis, which deals with the design and implementation of Unibo-BP: a novel, research-driven BP implementation, to be released as Free Software. Unibo-BP is fully compliant with RFC 9171, as demonstrated by a series of interoperability tests with ION and DTNME, and presents a few innovations, such as the ability to manage remote DTN nodes by means of the BP itself. Unibo-BP is compatible with pre-existing Unibo implementations of CGR (Contact Graph Routing) and LTP (Licklider Transmission Protocol) thanks to interfaces designed during the thesis. The thesis project also includes an implementation of TCPCLv3 (TCP Convergence Layer version 3, RFC 7242), which can be used as an alternative to LTPCL to connect with proximate nodes, especially in terrestrial networks. Summarizing, Unibo-BP is at the heart of a larger project, Unibo-DTN, which aims to implement the main components of a complete DTN stack (BP, TCPCL, LTP, CGR). Moreover, Unibo-BP is compatible with all DTNsuite applications, thanks to an extension of the Unified API library on which DTNsuite applications are based. The hope is that Unibo-BP and all the ancillary programs developed during this thesis will contribute to the growth of DTN popularity in academia and among space agencies

    Reliable Data Transmission in Challenging Vehicular Network using Delay Tolerant Network

    Get PDF
    In the 21st century, there has been an increasing tendency toward the wide adoption of wireless networks and technologies due to their significant advantages such as flexibility, mobility, accessibility, and low cost. Wireless technologies have therefore become essential factors in the improvement of intra-vehicle road safety in Vehicular Ad-hoc Network (VANET), which potentially reduce road traffic accidents by enabling efficient exchange of information between vehicles in the early stages. However, due to the inherent high mobility and rapid change of topology, there are numerous challenges in VANET. Hence, different software packages have been combined in this project to create the VANET environment, whereby the Objective Modular Network Testbed (OMNeT++) and the Simulation of Urban Mobility (SUMO), along with Vehicles in Network Simulation (VEINS) are integrated to model the VANET environment. Also, Delay Tolerant Network (DTN) are implemented in the Opportunistic Network Environment (ONE) simulator, where the Store-Carry-Forward technique is used to route traffic. When network resources are not limited, a high delivery ratio is possible. However, when network resources are scarce, these protocols will have a low delivery ratio and high overhead. Due to these limitations, in this research, an extensive performance evaluation of various routing protocols for DTN with different buffer management policies, giving insight into the impact of these policies on DTN routing protocol performance has been conducted. The empirical study gave insight into the strengths and limitations of the existing protocols thus enabling the selection of the benchmark protocols utilized in evaluating a new Enhanced Message Replication Technique (EMRT) proposed in this thesis. The main contribution of this thesis is the design, implementation, and evaluation of a novel EMRT that dynamically adjusts the number of message replicas based on a node's ability to quickly disseminate the message and maximize the delivery ratio. EMRT is evaluated using three different quota protocols: Spray&Wait, Encounter Based Routing (EBR), and Destination Based Routing Protocol (DBRP). Simulation results show that applying EMRT to these protocols improves the delivery ratio while reducing overhead ratio and latency average. For example, when combined with Spray&Wait, EBR, and DBRP, the delivery probability is improved by 13%, 8%, and 10%, respectively, while the latency average is reduced by 51%, 14%, and 13%, respectively

    The Origin and Early Evolution of Life

    Get PDF
    What is life? How, where, and when did life arise? These questions have remained most fascinating over the last hundred years. Systems chemistry is the way to go to better understand this problem and to try and answer the unsolved question regarding the origin of Life. Self-organization, thanks to the role of lipid boundaries, made possible the rise of protocells. The role of these boundaries is to separate and co-locate micro-environments, and make them spatially distinct; to protect and keep them at defined concentrations; and to enable a multitude of often competing and interfering biochemical reactions to occur simultaneously. The aim of this Special Issue is to summarize the latest discoveries in the field of the prebiotic chemistry of biomolecules, self-organization, protocells and the origin of life. In recent years, thousands of excellent reviews and articles have appeared in the literature and some breakthroughs have already been achieved. However, a great deal of work remains to be carried out. Beyond the borders of the traditional domains of scientific activity, the multidisciplinary character of the present Special Issue leaves space for anyone to creatively contribute to any aspect of these and related relevant topics. We hope that the presented works will be stimulating for a new generation of scientists that are taking their first steps in this fascinating field

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of-the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: quality-of-service and video communication, routing protocol and cross-layer design. A few interesting problems about security and delay-tolerant networks are also discussed. This book is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    Enhanced Interest Aware PeopleRank for Opportunistic Mobile Social Networks

    Get PDF
    Network infrastructures are being continuously challenged by increased demand, resource-hungry applications, and at times of crisis when people need to work from homes such as the current Covid-19 epidemic situation, where most of the countries applied partial or complete lockdown and most of the people worked from home. Opportunistic Mobile Social Networks (OMSN) prove to be a great candidate to support existing network infrastructures. However, OMSNs have copious challenges comprising frequent disconnections and long delays. we aim to enhance the performance of OMSNs including delivery ratio and delay. We build upon an interest-aware social forwarding algorithm, namely Interest Aware PeopleRank (IPeR). We explored three pillars for our contribution, which encompass (1) inspect more than one hop (multiple hops) based on IPeR (MIPeR), (2) by embracing directional forwarding (Directional-IPeR), and (3) by utilizing a combination of Directional forwarding and multi-hop forwarding (DMIPeR). For Directional-IPeR, different values of the tolerance factor of IPeR, such as 25% and 75%, are explored to inspect variations of Directional-IPeR. Different interest distributions and users’ densities are simulated using the Social-Aware Opportunistic Forwarding Simulator (SAROS). The results show that (1) adding multiple hops to IPeR enhanced the delivery ratio, number of reached interested forwarders, and delay slightly. However, it increased the cost and decreased F-measure hugely. Consequently, there is no significant gain in these algorithms. (2) Directional-IPeR-75 performed generally better than IPeR in delivery ratio, and the number of reached interested forwarders. Besides, when some of the uninterested forwarders did not participate in messages delivery, which is a realistic behavior, the performance is enhanced and performed better generally in all metrics compared to IPeR. (3) Adding multiple hops to directional guided IPeR did not gain any enhancement. (4) Directional-IPeR-75 performs better in high densities in all metrics except delay. Even though, it enhances delay in sparse environments. Consequently, it can be utilized in disastrous areas, in which few people are with low connectivity and spread over a big area. In addition, it can be used in rural areas as well where there is no existing networks

    Area-wide Integrated Pest Management

    Get PDF
    Over 98% of sprayed insecticides and 95% of herbicides reach a destination other than their target species, including non-target species, air, water and soil. The extensive reliance on insecticide use reduces biodiversity, contributes to pollinator decline, destroys habitat, and threatens endangered species. This book offers a more effective application of the Integrated Pest Management (IPM) approach, on an area-wide (AW) or population-wide (AW-IPM) basis, which aims at the management of the total population of a pest, involving a coordinated effort over often larger areas. For major livestock pests, vectors of human diseases and pests of high-value crops with low pest tolerance, there are compelling economic reasons for participating in AW-IPM. This new textbook attempts to address various fundamental components of AW-IPM, e.g. the importance of relevant problem-solving research, the need for planning and essential baseline data collection, the significance of integrating adequate tools for appropriate control strategies, and the value of pilot trials, etc. With chapters authored by 184 experts from more than 31 countries, the book includes many technical advances in the areas of genetics, molecular biology, microbiology, resistance management, and social sciences that facilitate the planning and implementing of area-wide strategies. The book is essential reading for the academic and applied research community as well as national and regional government plant and human/animal health authorities with responsibility for protecting plant and human/animal health

    Prediction-enhanced Routing in Disruption-tolerant Satellite Networks

    Get PDF
    This thesis introduces a framework for enhancing DTN (Delay-/Disruption-Tolerant Networking) routing in dynamic LEO satellite constellations based on the prediction of contacts. The solution is developed with a clear focus on the requirements imposed by the 'Ring Road' use case, mandating a concept for dynamic contact prediction and its integration into a state-of-the-art routing approach. The resulting system does not restrict possible applications to the 'Ring Road,' but allows for flexible adaptation to further use cases. A thorough evaluation shows that employing proactive routing in concert with a prediction mechanism offers significantly improved performance when compared to alternative opportunistic routing techniques

    Controlling the mobility and enhancing the performance of multiple message ferries in delay tolerant networks

    Get PDF
    In einem drahtlosen Netzwerk mit isolierten und stationären Knoten können Adhoc und verzögerungstolerante Netzwerk Routing-Protokolle nicht verwendet werden. Message Ferry Netzwerke sind die Lösung für diese Fälle, in denen ein (oder mehrere) Message Ferry Knoten den store-carry-forward Mechanismus verwendet und zwischen den Knoten reist, um Nachrichten auszutauschen. In diesem Fall erfahren die Nachrichten für gewöhnlich eine lange Verzögerung. Um die Performance der Message Ferry Netzwerke zu verbessern, kann die Mobilität der Message Ferry Knoten gesteuert werden. In dieser Doktorarbeit werden zwei Strategien zur Steuerung der Mobilität der Message Ferry Knoten studiert. Die Strategien sind das on-the-fly Entscheidungsverfahren in Ferry Knoten und die offline Wegplanung für Ferry Knoten. Für die on-the-fly Strategie untersucht diese Arbeit Decision-maker in Ferry Knoten, der die Entscheidung auf Grundlage der lokalen Observation eines Ferry Knoten trifft. Zur Koordinierung mehrerer Ferry Knoten, die keine globale Kenntnis über das Netzwerk haben, wird eine indirekte Signalisierung zwischen Ferry Knoten vorgeschlagen. Zur Kooperation der Ferry Knoten für die Zustellung der Nachrichten werden einige Ansätze zum Nachrichtenaustausch zwischen Ferry Knoten vorgeschlagen, in denen der Decision-maker eines Ferry Knotens seine Information mit dem verzögerungstoleranten Router des Ferry Knoten teilt, um die Effizienz des Nachrichtenaustauschs zwischen Ferry Knoten zu verbessern. Umfangreiche Simulationsstudien werden zur Untersuchung der vorgeschlagenen Ansätze und des Einflusses verschiedener Nachrichtenverkehrsszenarien vorgenommen. Außerdem werden verschiedene Szenarien mit unterschiedlicher Anzahl von Ferry Knoten, verschiedener Geschwindigkeit der Ferry Knoten und verschiedener Ansätze zum Nachrichtenaustausch zwischen Ferry Knoten studiert. Zur Evaluierung der offline Wegplanungsstrategie wird das Problem als Multiple Traveling Salesmen Problem (mTSP) modelliert und ein genetischer Algorithmus zur Approximation der Lösung verwendet. Es werden verschiedene Netzwerkarchitekturen zur Pfadplanung der Ferry Knoten vorgestellt und studiert. Schließlich werden die Strategien zur Steuerung der Mobilität der Ferry Knoten verglichen. Die Ergebnisse zeigen, dass die Performance der Strategien in Bezug auf die Ende-zu-Ende-Verzögerung von dem Szenario des Nachrichtenverkehrs abhängt. In Szenarien, wie Nachrichtenverkehr in Sensor-Netzwerken, in denen ein Knoten die Nachrichten zu allen anderen Knoten sendet oder von allen anderen Knoten empfängt, zeigt die offline Wegplanung, basierend auf der mTSP Lösung, bessere Performance als die on-the-fly Strategie. Andererseits ist die on-the-fly Stratgie eine bessere Wahl in Szenarien wie Nachrichtenaustausch zwischen Rettungskräften während einer Katastrophe, in denen alle drahtlose Knoten die Nachrichten austauschen müssen. Zudem ist die on-the-fly Strategie flexibler, robuster als offline Wegplanung und benötigt keine Initialisierungszeit.In a wireless network with isolated and stationary nodes, ad hoc and delay tolerant routing approaches fail to deliver messages. Message ferry networks are the solution for such networks where one or multiple mobile nodes, i.e. message ferry, apply the store-carry-forward mechanism and travel between nodes to exchange their messages. Messages usually experience a long delivery delay in this type of network. To improve the performance of message ferry networks, the mobility of ferries can be controlled. In this thesis, two main strategies to control mobility of multiple message ferries are studied. The strategies are the on-the-fly mobility decision making in ferries and the offline path planning for ferries. To apply the on-the-fly strategy, this work proposes a decision maker in ferries which makes mobility decisions based on the local observations of ferries. To coordinate multiple ferries, which have no global view from the network, an indirect signaling of ferries is proposed. For cooperation of ferries in message delivery, message forwarding and replication schemes are proposed where the mobility decision maker shares its information with the delay tolerant router of ferries to improve the efficiency of message exchange between ferries. An extensive simulation study is performed to investigate the performance of the proposed schemes and the impact of different traffic scenarios in a network. Moreover, different scenarios with different number of ferries, different speed of ferries and different message exchange approaches between ferries are studied. To study the offline path planning strategy, the problem is modeled as multiple traveling salesmen problem (mTSP) and a genetic algorithm is applied to approximate the solution. Different network architectures are proposed and studied where the path of ferries are planned in advance. Finally, the strategies to control the mobility of ferries are compared. The results show that the performance of each strategy, in terms of the average end-to-end delay of messages, depends on the traffic scenario in a network. In traffic scenarios same as the traffic in sensor networks, where only a single node generates messages to all nodes or receives messages from all node, the offline path planning based on mTSP solution performs better than the on-the-fly decision making. On the other hand, in traffic scenarios same as the traffic in disaster scenarios, where all nodes in a network may send and receive messages, the on-the-fly decision making provides a better performance. Moreover, the on-thy-fly decision making is always more flexible, more robust and does not need any initialization time
    corecore