56 research outputs found

    Sparsest Cut on Bounded Treewidth Graphs: Algorithms and Hardness Results

    Full text link
    We give a 2-approximation algorithm for Non-Uniform Sparsest Cut that runs in time nO(k)n^{O(k)}, where kk is the treewidth of the graph. This improves on the previous 22k2^{2^k}-approximation in time \poly(n) 2^{O(k)} due to Chlamt\'a\v{c} et al. To complement this algorithm, we show the following hardness results: If the Non-Uniform Sparsest Cut problem has a ρ\rho-approximation for series-parallel graphs (where ρβ‰₯1\rho \geq 1), then the Max Cut problem has an algorithm with approximation factor arbitrarily close to 1/ρ1/\rho. Hence, even for such restricted graphs (which have treewidth 2), the Sparsest Cut problem is NP-hard to approximate better than 17/16βˆ’Ο΅17/16 - \epsilon for Ο΅>0\epsilon > 0; assuming the Unique Games Conjecture the hardness becomes 1/Ξ±GWβˆ’Ο΅1/\alpha_{GW} - \epsilon. For graphs with large (but constant) treewidth, we show a hardness result of 2βˆ’Ο΅2 - \epsilon assuming the Unique Games Conjecture. Our algorithm rounds a linear program based on (a subset of) the Sherali-Adams lift of the standard Sparsest Cut LP. We show that even for treewidth-2 graphs, the LP has an integrality gap close to 2 even after polynomially many rounds of Sherali-Adams. Hence our approach cannot be improved even on such restricted graphs without using a stronger relaxation

    A PRG for Lipschitz Functions of Polynomials with Applications to Sparsest Cut

    Full text link
    We give improved pseudorandom generators (PRGs) for Lipschitz functions of low-degree polynomials over the hypercube. These are functions of the form psi(P(x)), where P is a low-degree polynomial and psi is a function with small Lipschitz constant. PRGs for smooth functions of low-degree polynomials have received a lot of attention recently and play an important role in constructing PRGs for the natural class of polynomial threshold functions. In spite of the recent progress, no nontrivial PRGs were known for fooling Lipschitz functions of degree O(log n) polynomials even for constant error rate. In this work, we give the first such generator obtaining a seed-length of (log n)\tilde{O}(d^2/eps^2) for fooling degree d polynomials with error eps. Previous generators had an exponential dependence on the degree. We use our PRG to get better integrality gap instances for sparsest cut, a fundamental problem in graph theory with many applications in graph optimization. We give an instance of uniform sparsest cut for which a powerful semi-definite relaxation (SDP) first introduced by Goemans and Linial and studied in the seminal work of Arora, Rao and Vazirani has an integrality gap of exp(\Omega((log log n)^{1/2})). Understanding the performance of the Goemans-Linial SDP for uniform sparsest cut is an important open problem in approximation algorithms and metric embeddings and our work gives a near-exponential improvement over previous lower bounds which achieved a gap of \Omega(log log n)

    Integrality gaps of semidefinite programs for Vertex Cover and relations to β„“1\ell_1 embeddability of Negative Type metrics

    Get PDF
    We study various SDP formulations for {\sc Vertex Cover} by adding different constraints to the standard formulation. We show that {\sc Vertex Cover} cannot be approximated better than 2βˆ’o(1)2-o(1) even when we add the so called pentagonal inequality constraints to the standard SDP formulation, en route answering an open question of Karakostas~\cite{Karakostas}. We further show the surprising fact that by strengthening the SDP with the (intractable) requirement that the metric interpretation of the solution is an β„“1\ell_1 metric, we get an exact relaxation (integrality gap is 1), and on the other hand if the solution is arbitrarily close to being β„“1\ell_1 embeddable, the integrality gap may be as big as 2βˆ’o(1)2-o(1). Finally, inspired by the above findings, we use ideas from the integrality gap construction of Charikar \cite{Char02} to provide a family of simple examples for negative type metrics that cannot be embedded into β„“1\ell_1 with distortion better than 8/7-\eps. To this end we prove a new isoperimetric inequality for the hypercube.Comment: A more complete version. Changed order of results. A complete proof of (current) Theorem
    • …
    corecore