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Abstract

We study various SDP formulations for Vertex Cover by adding different constraints
to the standard formulation. We show that Vertex Cover cannot be approximated better
than 2−O(

√
log log n/ log n) even when we add the so-called pentagonal inequality constraints

to the standard SDP formulation, and thus almost meet the best upper bound known due to
Karakostas, of 2−Ω(

√
1/ log n). We further show the surprising fact that by strengthening the

SDP with the (intractable) requirement that the metric interpretation of the solution embeds
into `1 with no distortion, we get an exact relaxation (integrality gap is 1), and on the other hand
if the solution is arbitrarily close to being `1 embeddable, the integrality gap is 2−o(1). Finally,
inspired by the above findings, we use ideas from the integrality gap construction of Charikar
to provide a family of simple examples for negative type metrics that cannot be embedded into
`1 with distortion better than 8/7− ε. To this end we prove a new isoperimetric inequality for
the hypercube.

1 Introduction

A vertex cover in a graph G = (V,E) is a set S ⊆ V such that every edge e ∈ E intersects S in
at least one endpoint. Denote by vc(G) the size of the minimum vertex cover of G. It is well-
known that the minimum vertex cover problem has a 2-approximation algorithm, and it is widely
believed that for every constant ε > 0, there is no (2−ε)-approximation algorithm for this problem.
Currently the best known hardness result for this problem, based on the PCP theorem, shows that
1.36-approximation is NP-hard [10]. If we were to assume the Unique Games Conjecture [18] the
problem would be essentially settled as 2− Ω(1) would then be NP-hard [19].

In [14], Goemans and Williamson introduced semidefinite programming as a tool for obtaining
approximation algorithms. Since then semidefinite programming has become an important tech-
nique, and for many problems the best known approximation algorithms are obtained by solving
an SDP relaxation of them.

The best known algorithms for Vertex Cover compete in “how big is the little oh” in the
2 − o(1) factor. The best two are in fact based on SDP relaxations: Halperin [15] gives a (2 −
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Ω(log log ∆/ log ∆))-approximation where ∆ is the maximal degree of the graph while Karakostas
obtains a (2− Ω(1/

√
log n))-approximation [17]. As we later show, our lower bound almost meets

the latter upper bound even in this resolution of the little oh.
The standard way to formulate the Vertex Cover problem as a quadratic integer program is

the following:
Min

∑
i∈V (1 + x0xi)/2

s.t. (xi − x0)(xj − x0) = 0 ∀ ij ∈ E
xi ∈ {−1, 1} ∀ i ∈ {0} ∪ V,

where the set of the vertices i for which xi = x0 correspond to the vertex cover. Relaxing this
integer program to a semidefinite program, the scalar variable xi becomes a vector vi and we get:

Min
∑

i∈V (1 + v0vi)/2
s.t. (vi − v0) · (vj − v0) = 0 ∀ ij ∈ E

‖vi‖ = 1 ∀ i ∈ {0} ∪ V.
(1)

Kleinberg and Goemans [21] proved that SDP (1) has integrality gap of 2−o(1). Specifically, given
ε > 0 they construct a graph Gε for which vc(Gε) is at least (2− ε) times larger than the solution
to SDP (1). They also suggested the following strengthening of SDP (1) and left its integrality gap
as an open question:

Min
∑

i∈V (1 + v0vi)/2
s.t. (vi − v0) · (vj − v0) = 0 ∀ ij ∈ E

(vi − vk) · (vj − vk) ≥ 0 ∀ i, j, k ∈ {0} ∪ V
‖vi‖ = 1 ∀ i ∈ {0} ∪ V.

(2)

Charikar [6] answered this question by showing that the same graph Gε but a different vector
solution satisfies SDP (2)1 and gives rise to an integrality gap of 2− o(1) as before. The following
is an equivalent formulation to SDP (2):

Min
∑

i∈V 1− ‖v0 − vi‖2/4
s.t. ‖vi − v0‖2 + ‖vj − v0‖2 = ‖vi − vj‖2 ∀ ij ∈ E

‖vi − vk‖2 + ‖vj − vk‖2 ≥ ‖vi − vj‖2 ∀ i, j, k ∈ {0} ∪ V
‖vi‖ = 1 ∀ i ∈ {0} ∪ V

(3)

Viewing SDPs as relaxations over `1: The above reformulation reveals a connection to metric
spaces. The second constraint in SDP (3) says that ‖ · ‖2 induces a metric on {vi : i ∈ {0} ∪ V },
while the first says that v0 is on the shortest path between the images of every two neighbours. This
suggests a more careful study of the problem from the metric viewpoint which is the purpose of this
article. Such connections are also important in the context of the Sparsest Cut problem, where
the natural SDP relaxation was analyzed in the breakthrough work of Arora, Rao and Vazirani
[5] and it was shown that its integrality gap is at most O(

√
log n). This later gave rise to some

significant progress in the theory of metric spaces [7, 4].
Let f : (X, d) → (X ′, d′) be an embedding of metric space (X, d) into another metric space

(X ′, d′). The value supx,y∈X
d′(f(x),f(y))

d(x,y) × supx,y∈X
d(x,y)

d′(f(x),f(y)) is called the distortion of f . For a

1To be more precise, Charikar’s result was about a slightly weaker formulation than (2) but it is not hard to see
that the same construction works for SDP (2) as well.
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metric space (X, d), let c1(X, d) denote the minimum distortion required to embed (X, d) into `1.
Notice that c1(X, d) = 1 if and only if (X, d) can be embedded isometrically into `1, namely without
changing any of the distances. Consider a vertex cover S and its corresponding solution to SDP
(2), i.e., vi = 1 for every i ∈ S ∪ {0} and vi = −1 for every i 6∈ S. The metric defined by ‖ · ‖2 on
this solution (i.e., d(i, j) = ‖vi−vj‖2) is isometrically embeddable into `1. Thus we can strengthen
SDP (2) by allowing any arbitrary list of valid inequalities in `1 to be added. The triangle inequality
is one type of such constraints. The next natural inequality of this sort is the pentagonal inequality:
A metric space (X, d) is said to satisfy the pentagonal inequality if for S, T ⊂ X of sizes 2 and 3
respectively it holds that

∑
i∈S,j∈T d(i, j) ≥

∑
i,j∈S d(i, j)+

∑
i,j∈T d(i, j). Note that this inequality

does not apply to every metric, but it does hold for those that are `1-embeddable. This leads to
the following natural strengthening of SDP (3):

Min
∑

i∈V 1− ‖v0 − vi‖2/4
s.t. ‖vi − v0‖2 + ‖vj − v0‖2 = ‖vi − vj‖2 ∀ ij ∈ E∑

i∈S,j∈T ‖vi − vj‖2 ≥
∑

i,j∈S ‖vi − vj‖2+∑
i,j∈T ‖vi − vj‖2

∀ S, T ⊆ {0} ∪ V,
|S| = 2, |T | = 3

‖vi‖ = 1 ∀ i ∈ {0} ∪ V

(4)

In Theorem 5, we prove that SDP (4) has an integrality gap of 2−o(1). It is important to point
out that a-priori there is no reason to believe that local addition of inequalities such as these will not
improve the integrality gap; indeed in the case of Sparsest Cut triangle inequality is necessary to
achieve the O(

√
log n) bound mentioned above. It is interesting to note that for Sparsest Cut, it

is not known how to show a nonconstant integrality gap against pentagonal (or any other k-gonal)
inequalities, although recently a nonconstant integrality gap was shown in [20] and later in [8], in
the presence of the triangle inequalities2.

A recent related result by Georgiou, Magen, Pitassi and Tourlakis [13] shows an integrality gap
of 2 − o(1) for a nonconstant number of rounds of the so-called LS+ system for Vertex Cover.
It is not known whether this result subsumes Theorem 5 or not, since pentagonal inequalities are
not generally implied by any number of rounds of the LS+ procedure. We elaborate on this in the
Discussion section.

One can further impose any `1-constraint not only for the metric defined by {vi : i ∈ V ∪ {0}},
but also for the one that comes from {vi : i ∈ V ∪{0}}∪{−vi : i ∈ V ∪{0}}. Triangle inequalities for
this extended set result in the constraints ‖vi−vj‖2+‖vi−vk‖2+‖vj−vk‖2 ≤ 2. The corresponding
tighter SDP is used in [17] to get integraility gap of at most 2 − Ω( 1√

log n
). Karakostas [17] asks

whether the integrality gap of this strengthening breaks the “2 − o(1) barrier”: we answer this
negatively in Section 4.3. In fact we show that the above upper bound is almost asymptotically
tight, exhibiting integrality gap of 2−O(

√
log log n

log n ).

Integrality gap with respect to `1 embeddability: At the extreme, strengthening the
SDP with `1-valid constraints, would imply the condition that the metric defined by ‖ · ‖ on
{vi : i ∈ {0} ∪ V }, namely d(i, j) = ‖vi − vj‖2 is `1 embeddable. Doing so leads to the following
intractable program:

2As Khot and Vishnoi note, and leave as an open problem, it is possible that their example satisfies some or all
k-gonal inequalities.
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Min
∑

i∈V 1− ‖v0 − vi‖2/4
s.t. ‖vi − v0‖2 + ‖vj − v0‖2 = ‖vi − vj‖2 ∀ ij ∈ E

‖vi‖ = 1 ∀ i ∈ {0} ∪ V
c1({vi : i ∈ {0} ∪ V }, ‖ · ‖2) = 1

(5)

In [1], it is shown that an SDP formulation of Minimum Multicut, even with the constraint
that the ‖ · ‖2 distance over the variables is isometrically embeddable into `1, still has a large
integrality gap. For the Max Cut problem, which is more intimately related to our problem, it is
easy to see that `1 embeddability does not prevent integrality gap of 8/9. It is therefore tempting
to believe that there is a large integrality gap for SDP (5) as well. Surprisingly, SDP (5) has no
gap at all: we show in Theorem 2, that the value of SDP (5) is exactly the size of the minimum
vertex cover. A consequence of this fact is that any feasible solution to SDP (2) that surpasses the
minimum vertex cover induces an `2

2 distance which is not isometrically embeddable into `1. This
includes the integrality gap constructions of Kleinberg and Goemans, and that of Charikar’s for
SDPs (2) and (3) respectively. The construction of Charikar is more interesting in this context as
the obtained `2

2 distance is also a negative type metric, that is an `2
2 metric that satisfies triangle

inequality. See [9] for background and nomenclature.
In contrast to Theorem 2, we show in Theorem 3 that if we relax the embeddability constraint

in SDP (5) to c1({vi : i ∈ {0} ∪ V }, ‖ · ‖2) ≤ 1 + δ for any constant δ > 0, then the integrality
gap may “jump” to 2 − o(1). Compare this with a problem such as Sparsest Cut in which an
addition of such a constraint immediately implies integrality gap at most 1 + δ.

Negative type metrics that are not `1 embeddable: Negative type metrics are metrics which
are the squares of Euclidean distances of set of points in Euclidean space. Inspired by Theorem 2,
we construct in Section 5 a simple negative type metric space (X, ‖ · ‖2) that does not embed well
into `1. Specifically, we get c1(X) ≥ 8

7 − ε for every ε > 0. In order to show this we prove a
new isoperimetric inequality for the hypercube Qn = {−1, 1}n, which we believe is of independent
interest. This theorem generalizes the standard one, and under certain conditions provides better
guarantees for edge expansion.

Theorem 1 (Generalized Isoperimetric inequality) For every set S ⊆ Qn,

|E(S, Sc)| ≥ |S|(n− log2 |S|) + p(S).

where p(S) denotes the number of vertices u ∈ S such that −u ∈ S.

Khot and Vishnoi [20] constructed an example of an n-point negative type metric that for every
δ > 0 requires distortion at least (log log n)1/6−δ to embed into `1. Krauthgamer and Rabani [22]
showed that in fact Khot and Vishnoi’s example requires a distortion of at least Ω(log log n). Later
Devanur, Khot, Saket and Vishnoi [8] showed an example with distortion Ω(log log n) even on
average when embedded into `1 (we note that our example is also “bad” on average). Although the
above examples require nonconstant distortion to embed into `1, we believe that our result is still
interesting because (i) our construction is much simpler than the ones in [20, 22, 8]; in comparison,
showing that triangle inequality holds requires a lot of technical work in [20, 22, 8] whereas in our
construction it is immediate (ii) very few examples are known of negative type metrics that do not
embed isometrically into `1, and any such example reveals some underlying sructure. Prior to Khot
and Vishnoi’s result, the best known lower bounds (see [20]) were due to Vempala, 10/9 for a metric
obtained by a computer search, and Goemans, 1.024 for a metric based on the Leech Lattice. We
mention that by [4] every negative type metric embeds into `1 with distortion O(

√
log n log log n).
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2 Preliminaries and notation

A vertex cover of a graph G is a set of vertices that touch all edges. An independent set in G is
a set I ⊆ V such that no edge e ∈ E joins two vertices in I. We denote by α(G) the size of the
maximum independent set of G. Vectors are always denoted in bold font (such as v, w, etc.); ‖v‖
stands for the Euclidean norm of v, u · v for the inner product of u and v, and u ⊗ v for their
tensor product. Specifically, if v,u ∈ Rn, u⊗ v is the vector with coordinates indexed by ordered
pairs (i, j) ∈ [n]2 that assumes value uivj on coordinate (i, j). Similarly, the tensor product of
more than two vectors is defined. It is easy to see that (u⊗ v).(u′ ⊗ v′) = (u · u′)(v · v′). For two
vectors u ∈ Rn and v ∈ Rm, denote by (u,v) ∈ Rn+m the vector whose projection to the first n
coordinates is u and to the last m coordinates is v.

Next, we give a few basic definitions and facts about finite metric spaces. A metric space
(X, dX) embeds with distortion at most D into (Y, dY ) if there exists a mapping φ : X 7→ Y so that
for all a, b ∈ X γ · dX(a, b) ≤ dY (φ(a), φ(b)) ≤ γD · dX(a, b), for some γ > 0. We say that (X, d)
is `1 embeddable if it can be embedded with distortion 1 into Rm equipped with the `1 norm. An
`2
2 distance on X is a distance function for which there there are vectors vx ∈ Rm for every x ∈ X

so that d(x, y) = ‖vx − vy‖2. If, in addition, d satisfies triangle inequality, we say that d is an
`2
2 metric or negative type metric. It is well known [9] that every `1 embeddable metric is also a

negative type metric.

3 `1 and integrality gap of SDPs for Vertex Cover – an “all or
nothing” phenomenon

It is well known that for Sparsest Cut there is a tight connection between `1 embeddability
and integrality gap. In fact the integrality gap is bounded above by the least `1 distortion of the
SDP solution. At the other extreme stand problems like Max Cut and Multi Cut, where `1

embeddability does not provide any strong evidence for small integrality gap. In this section we show
that Vertex Cover falls somewhere between these two classes of `1-integrality gap relationship
witnessing a sharp transition in integrality gap in the following sense: while `1 embeddability
implies no integrality gap, allowing a small distortion, say 1.001 does not prevent integrality gap
of 2− o(1)!

Theorem 2 For a graph G = (V,E), the answer to the SDP formulated in SDP (5) is the size of
the minimum vertex cover of G.

Proof. Let d be the metric solution of SDP (5). We know that d is the result of an `2
2 unit

representation (i.e., it comes from square norms between unit vectors), and furthermore it is `1

embeddable. By cut representations of `1 embeddable metrics (see e.g. [9]) we can assume that
there exist λt > 0 and ft : {0} ∪ V → {−1, 1}, t = 1, . . . ,m, such that

‖vi − vj‖2 =
m∑

t=1

λt|ft(i)− ft(j)|, (6)

for every i, j ∈ {0} ∪ V . Without loss of generality, we can assume that ft(0) = 1 for every t.
For convenience, we switch to talk about Independent Set and its relaxation, which is the same
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as SDP (5) except the objective becomes Max
∑

i∈V ‖v0 − vi‖2/4. Obviously, the theorem follows
from showing that this is an exact relaxation.

We argue that (i) It = {i ∈ V : ft(i) = −1} is a (nonempty) independent set for every t, and
(ii)

∑
λt = 2. Assuming these two statements we get∑

i∈V

‖vi − v0‖2

4
=

∑
i∈V

∑m
t=1 λt|1− ft(i)|

4
=

m∑
t=1

λt|It|
2

≤ max
t∈[m]

|It| ≤ α(G),

and so the relaxation is exact and we are done.
We now prove the two statements. The first is rather straightforward: For i, j ∈ It, (6) implies

that d(i, 0) + d(0, j) > d(i, j). It follows that ij cannot be an edge else it would violate the first
condition of the SDP (we may assume that It is nonempty since otherwise the ft(·) terms have no
contribution in (6)). The second statement is more surprising and uses the fact that the solution is
optimal. The falsity of such a statement for the problem of Max Cut (say) explains the different
behaviour of the latter problem with respect to integrality gaps of `1 embeddable solutions. We
now describe the proof.

Let v′i = (
√

λ1/2f1(i), . . . ,
√

λm/2fm(i), 0). From (6) we conclude that ‖v′i−v′j‖2 = ‖vi−vj‖2,
hence there exists a vector w = (w1, w2, ..., wm+1) ∈ Rm+1 and an orthogonal transformation T ,
such that

vi = T
(
v′i + w

)
Since the constraints and the objective function of the SDP are invariant under orthogonal

transformations, without loss of generality we may assume that

vi = v′i + w,

for i ∈ V ∪ {0}. We know that

1 = ‖vi‖2 = ‖T (v′i + w)‖2 = ‖v′i + w‖2 = w2
m+1 +

m∑
t=1

(
√

λt/2ft(i) + wt)2. (7)

Since ‖v′i‖2 = ‖v′0‖2 =
∑m

t+1 λt/2, for every i ∈ V ∪ {0}, from (7) we get v′0 ·w = v′i ·w. Summing
this over all i ∈ V , we have

|V |(v′0 ·w) =
∑
i∈V

v′i ·w =
m∑

t=1

(|V | − 2|It|)
√

λt/2wt,

or
m∑

t=1

|V |
√

λt/2wt =
m∑

t=1

(|V | − 2|It|)
√

λt/2wt,

and therefore
m∑

t=1

|It|
√

λt/2wt = 0. (8)

Now (7) and (8) imply that

max
t∈[m]

|It| ≥
m∑

t=1

(
√

λt/2ft(0) + wt)2|It| =
m∑

t=1

(
λt|It|

2
+ w2

t |It|
)
≥

m∑
t=1

λt|It|
2

. (9)
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As we have observed before
m∑

t=1

λt|It|
2

=
∑
i∈V

‖vi − v0‖2

4

which means (as clearly
∑

i∈V
‖vi−v0‖2

4 ≥ α(G)) that the inequalities in (9) must be tight. Now,
since |It| > 0 we get that w = 0 and from (7) we get the second statement, i.e.,

∑
λt = 2. This

concludes the proof.
Now let δ be an arbitrary positive number, and let us relax the last constraint in SDP (5) to

get

Min
∑

i∈V 1− ‖v0 − vi‖2/4
s.t. ‖vi − v0‖2 + ‖vj − v0‖2 = ‖vi − vj‖2 ∀ ij ∈ E

‖vi‖ = 1 ∀ i ∈ {0} ∪ V
c1({vi : i ∈ {0} ∪ V }, ‖ · ‖2) ≤ 1 + δ

Theorem 3 For every ε > 0, there is a graph G for which vc(G)
sd(G) ≥ 2−ε, where sd(G) is the solution

to the above SDP.

The proof appears in the next section after we describe Charikar’s construction.

4 Integrality gap for stronger semidefinite formulations

In this section we discuss the integrality gap for stronger semidefinite formulations of vertex cover.
In particular we show that Charikar’s construction satisfies both SDPs (11) and (4). We start by
describing this construction.

4.1 Charikar’s construction

The graphs used in the construction are the so-called Hamming graphs. These are graphs with
vertices {−1, 1}n and two vertices are adjacent if their Hamming distance is exactly an even integer
d = γn. A result of Frankl and Rödl [12] shows that vc(G) ≥ 2n − (2 − δ)n, where δ > 0 is a
constant depending only on γ. In fact, when one considers the exact dependency of δ in γ it can
be shown (see [13]) that as long as γ = Ω(

√
log n/n) then any vertex cover comprises 1− O(1/n)

fraction of the graph. Kleinberg and Goemans [21] showed that by choosing a constant γ and n
sufficiently large, this graph gives an integrality gap of 2− ε for SDP (1). Charikar [6] showed that
in fact G implies the same result for the SDP formulation in (2) too. To this end he introduced
the following solution to SDP (2):

For every ui ∈ {−1, 1}n, define u′i = ui/
√

n, so that u′i · u′i = 1. Let λ = 1 − 2γ, q(x) =
x2t + 2tλ2t−1x and define y0 = (0, . . . , 0, 1), and

yi =

√
1− β2

q(1)

u′i ⊗ . . .⊗ u′i︸ ︷︷ ︸
2t times

,
√

2tλ2t−1u′i, 0

+ βy0,

where β will be determined later. Note that yi is normalized to satisfy ‖yi‖ = 1.
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Moreover yi is defined so that yi ·yj takes its minimum value when ij ∈ E, i.e., when u′i ·u′j =
−λ. As is shown in [6], for every ε > 0 we may set t = Ω(1

ε ), β = Θ(1/t), γ = 1
4t to get that

(y0 − yi) · (y0 − yj) = 0 for ij ∈ E, while (y0 − yi) · (y0 − yj) ≥ 0 always.
Now we verify that all the triangle inequalities, i.e., the second constraint of SDP (2) are

satisfied: First note that since every coordinate takes only two different values for the vectors in
{yi : i ∈ V }, it is easy to see that c1({yi : i ∈ V }, ‖ · ‖2) = 1. So the triangle inequality holds
when i, j, k ∈ V . When i = 0 or j = 0, the inequality is trivial, and it only remains to verify
the case that k = 0, i.e., (y0 − yi) · (y0 − yj) ≥ 0, which was already mentioned above. Now∑

i∈V (1 + y0 · yi)/2 = 1+β
2 · |V | =

(
1
2 + O(ε)

)
|V |. In our application, we prefer to set γ and ε to

be Ω(
√

log log n
log n ) and since, by the above comment, vc(G) = (1−O(1/n))|V | the integrality gap we

get is

(1−O(1/n))/(1/2 + O(ε)) = 2−O(ε) = 2−O

(√
log log |V |

log |V |

)
.

4.2 Proof of Theorem 3

We show that the negative type metric implied by Charikar’s solution (after adjusting the parame-
ters appropriately) requires distortion of at most 1 + δ. Let yi and u′i be defined as in Section 4.1.
To prove Theorem 3, it is sufficient to prove that c1({yi : i ∈ {0}∪V }, ‖ · ‖2) = 1+ o(1). Note that
every coordinate of yi for all i ∈ V takes at most two different values. It is easy to see that this
implies c1({yi : i ∈ V }, ‖ · ‖2) = 1. In fact

f : yi 7→
1− β2

q(1)

 2
nt

u′i ⊗ . . .⊗ u′i︸ ︷︷ ︸
2t times

,
2√
n

2tλ2t−1u′i

 , (10)

is an isometry from ({yi : i ∈ V }, ‖ · ‖2) to `1. For i ∈ V , we have

‖f(yi)‖1 =
1− β2

q(1)

(
2
nt
× n2t

nt
+

2√
n

2tλ2t−1 1√
n

+ 0
)

=
1− β2

q(1)
× (2 + 4tλ2t−1)

Since β = Θ(1
t ), recalling that λ = 1− 1

2t , it is easy to see that for every i ∈ V , limt→∞ ‖f(yi)‖1 = 2.
On the other hand for every i ∈ V

lim
t→∞

‖yi − y0‖2 = lim
t→∞

2− 2(yi · y0) = lim
t→∞

2− 2β = 2.

So if we extend f to {yi : i ∈ V ∪ {0}} by defining f(y0) = 0, we obtain a mapping from
({yi : i ∈ V ∪ {0}}, ‖ · ‖2) to `1 whose distortion tends to 1 as t goes to infinity.
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4.3 Karakostas’ and pentagonal SDP formulations

Karakostas suggests the following SDP relaxation, that is the result of adding to SDP (3) the
triangle inequalities applied to the set {vi : i ∈ V ∪ {0}} ∪ {−vi : i ∈ V ∪ {0}}.

Min
∑

i∈V (1 + v0vi)/2
s.t. (vi − v0) · (vj − v0) = 0 ∀ ij ∈ E

(vi − vk) · (vj − vk) ≥ 0 ∀ i, j, k ∈ V
(vi + vk) · (vj − vk) ≥ 0 ∀ i, j, k ∈ V
(vi + vk) · (vj + vk) ≥ 0 ∀ i, j, k ∈ V
‖vi‖ = 1 ∀ i ∈ {0} ∪ V.

(11)

Theorem 4 The integrality gap of SDP (11) is 2−O(
√

log log |V |/ log |V |).

Proof. We show that Charikar’s construction satisfies formulation (11). By [6] and from the
discussion in Section 4.1, it follows that all edge constraints and triangle inequalities of the original
points hold. Hence we need only consider triangle inequalities with at least one nonoriginal point.
By homogeneity, we may assume that there is exactly one such point.

Since all coordinates of yi for i > 0 assume only two values with the same absolute value, it
is clear that not only does the metric they induce is `1 but also taking ±yi for i > 0 gives an `1

metric; in particular all triangle inequalities that involve these vectors are satisfied. In fact, we
may fix our attention to triangles in which ±y0 is the middle point. This is since

(±yi −±yj) · (y0 −±yj) = (±yj − y0) · (∓yi − y0).

Consequently, and using symmetry, we are left with checking the nonnegativity of (yi + y0) ·
(yj + y0) and (−yi − y0) · (yj − y0).

(yi + y0) · (yj + y0) = 1 + y0 · (yi + yj) + yi · yj ≥ 1 + 2β + β2 − (1− β2) = 2β(1 + β) ≥ 0.

Finally, (−yi−y0) · (yj −y0) = 1+y0 · (yi−yj)−yi ·yj = 1−yi ·yj ≥ 0 as yi,yj are of norm 1.
By now we know that taking all the `1 constraints leads to an exact relaxation, but not a

tractable one. Our goal here is to explore the possibility that stepping towards `1 embeddability
while still maintaining computational feasibility would considerably reduce the integrality gap. A
canonical subset of valid inequalities for `1 metrics is the so-called Hypermetric inequalities. Metrics
that satisfy all these inequalities are called hypermetrics. Again, taking all these constraints is not
feasible, and yet we do not know whether this may lead to a better integrality gap (notice that we
do not know that Theorem 2 remains true if we replace the `1 embeddability constraints with a
hypermetricity constraint). See [9] for a related discussion about hypermetrics. We instead consider
the effect of adding a small number of such constraints. The simplest hypermetric inequalities beside
triangle inequalities are the pentagonal inequalities. These constraints consider two sets of points
of size 2 and 3, and require that the sum of the distances between points in different sets is at least
the sum of the distances within sets. Formally, let S, T ⊂ X, |S| = 2, |T | = 3, then we have the
inequality

∑
i∈S,j∈T d(i, j) ≥

∑
i,j∈S d(i, j)+

∑
i,j∈T d(i, j). To appreciate this inequality it is useful

to describe where it fails. Consider the graph metric of K2,3. Here, the LHS of the inequality is 6
and the RHS is 8, hence K2,3 violates the pentagonal inequality. In the following theorem we show
that this strengthening past the triangle inequalities fails to reduce the integrality gap significantly.
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Theorem 5 The integrality gap of SDP (4) is 2−O(
√

log log |V |/ log |V |).

Proof. We note that in order to satisfy the triangle inequalities, the conditions that should be
satisfied by the “tensoring-polynomial” used in the construction (“q” in the notation of the previous
subsection) are rather modest. Essentially we needed that q′(−λ) = 0, q(−λ)/q(1) approaches −1,
and that q′′(−λ) ≥ 0. For the pentagonal inequalities we need to require more properties from
q, namely that it is convex on its entire domain and that its derivative satisfies certain linear
conditions, all of which turn out to be true.

We show that the metric space used in Charikar’s construction is a feasible solution. By ig-
noring y0 the space defined by d(i, j) = ‖yi − yj‖2 is `1 embeddable. Therefore, the only `1-valid
inequalities that may be violated are ones containing y0. Hence, we wish to consider a pentagonal
inequality containing y0 and four other vectors, denoted by y1,y2,y3,y4. Assume first that the
partition of the five points in the inequality puts y0 together with two other points; then, using the
fact that d(0, 1) = d(0, 2) = d(0, 3) = d(0, 4) and triangle inequality we get that such an inequality
must hold. It remains to consider a partition of the form ({y1,y2,y3}, {y4,y0}), and show that:

d(1, 2) + d(1, 3) + d(2, 3) + d(0, 4) ≤ d(1, 4) + d(2, 4) + d(3, 4) + d(0, 1) + d(0, 2) + d(0, 3)

As the vectors are of unit norm, it is clear that d(0, i) = 2− 2β for all i > 0 and that d(i, j) =
2−2yiyj . Recall that every yi is associated with a {−1, 1} vector ui and with its normalized multiple
u′i. Also, it is simple to check that yi ·yj = β2 +(1−β2)q(u′i ·u′j)/q(1) where q(x) = x2t +2λ2t−1x.
After substituting the distances as functions of the normalized vectors, our goal will then be to
show:

E = q(u′1 · u′2) + q(u′1 · u′3) + q(u′2 · u′3)− q(u′1 · u′4)− q(u′2 · u′4)− q(u′3 · u′4) ≥ −2q(1)
1 + β

(12)

The rest of the proof analyzes the minima of the function E and ensures that (12) is satisfied at
those minima. We first partition the coordinates of the original hypercube into four sets according
to the values assumed by u1,u2 and u3. We may assume that in any coordinate at most one of
these get the value 1 (otherwise multiply the values of the coordinate by −1). We get four sets, P0

for the coordinates in which all three vectors assume value −1, and P1, P2, P3 for the coordinates
in which exactly u1,u2,u3 respectively assumes value 1.

We now consider u4. We argue that without loss of generality, we may assume that u4 is “pure”
on each of the P0, P1, P2, P3 at a minimum of E; in other words it is either all 1 or all −1 on each
one of P0, P1, P2, P3.

Proposition 1 If there is a violating configuration, then there is one in which u4 is either all 1 or
all −1 on each one of P0, P1, P2, P3.

Proof. Assume for the sake of contradiction that there are w coordinates in P0 on which u4

assumes value −1, and that 0 < w < |P0|. Let u+
4 (similarly u−4 ) be identical to u4 except we

replace one 1 in P0 by −1 (replace one −1 in P0 by 1). We show that replacing u4 by u+
4 or by u−4

we decrease the expression E. Let pi = ui · u4, p+
i = u′i · (u

+
4 )′ and p−i = u′i · (u

−
4 )′ for i = 1, 2, 3.

Notice that the above replacement only changes the negative terms in (12) so our goal now is to
show that

∑3
i=1 q(pi) < max{

∑3
i=1 q(p+

i ),
∑3

i=1 q(p−i )}. But:

max{
3∑

i=1

q(p+
i ),

3∑
i=1

q(p−i )} ≥
3∑

i=1

q(p+
i ) + q(p−i )

2
>

3∑
i=1

q

(
p+

i + p−i
2

)
=

3∑
i=1

q(pi)
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where the last inequality is using the (strict) convexity of q. This of course applies to P1, P2 and
P3 in precisely the same manner.

For P0, we can in fact say something stronger than we do for P1, P2, P3:

Proposition 2 If there is a violating configuration, then there is one in which u4 has all the P0

coordinates set to −1.

The above characterizations significantly limit the type of configurations we need to check.
Proposition 1 was based solely on the (strict) convexity of q. Proposition 2 is more involved and
uses more properties of the polynomial q. If q was a monotone increasing function it would be
obvious, but of course the whole point behind q is that it brings to minimum some intermediate
value (−λ) and hence can not be increasing. We postpone the proof of Proposition 2 till the end
of the Section and we will now continue our analysis assuming the proposition.

The cases that are left are characterized by whether u4 is 1 or −1 on each of P1, P2, P3. By
symmetry all we really need to know is ξ(u4) = |{i : u4 is 1 on Pi}|. If ξ(u4) = 1 it means
that u4 is the same as one of u1,u2 or u4 hence the pentagonal inequality reduces to the triangle
inequality, which we already know is valid. If ξ(u4) = 3, it is easy to see that u′1u

′
4 = u′2u

′
3, and

likewise u′2u
′
4 = u′1u

′
3 and u′3u

′
4 = u′1u

′
2 hence E is 0 for these cases, which means that (12) is

satisfied.
We are left with the cases ξ(u4) ∈ {0, 2}.

Case 1: ξ(u4) = 0
Let x = 2

n |P1|, y = 2
n |P2|, z = 2

n |P3|. Notice that x + y + z = 2
n(|P1|+ |P2|+ |P3|) ≤ 2, as these

sets are disjoint. Now, think of

E = q(1− (x + y)) + q(1− (x + z)) + q(1− (y + z))− q(1− x)− q(1− y)− q(1− z)

as a function from R3 to R. We will show that E achieves its minimum at points where either x, y
or z are zero. Assume that 0 ≤ x ≤ y ≤ z.

Consider the function g(δ) = E(x− δ, y + δ, z). It is easy to see that g′(0) = q′(1− (x + z))−
q′(1 − (y + z)) − q′(1 − x) + q′(1 − y). We will prove that g′(δ) ≤ 0 for every δ ∈ [0, x]. This, by
the Mean Value Theorem implies that E(0, x + y, z) ≤ E(x, y, z), and hence we may assume that
x = 0. This means that y1 = y4 which reduces to the triangle inequality on y0,y2,y3.

Note that in g′(0), the two arguments in the terms with positive sign have the same average
as the arguments in the terms with negative sign, namely µ = 1 − (x + y + z)/2. We now have
g′(0) = q′(µ + b) − q′(µ + s) − q′(µ− s) + q′(µ− b), where b = (x− y + z)/2, s = (−x + y + z)/2.
After calculations:

g′(0) = 2t[(µ + b)2t−1 + (µ− b)2t−1 − (µ + s)2t−1 − (µ− s)2t−1]

= 4t
∑

i even

(
2t− 1

i

)
µ2t−1−i(bi − si)

Observe that µ ≥ 0. Since x ≤ y, we get that s ≥ b ≥ 0. This means that g′(0) ≤ 0. It can be
easily checked that the same argument holds if we replace x, y by x− δ and y + δ. Hence g′(δ) ≤ 0
for every δ ∈ [0, x], and we are done.
Case 2: ξ(u4) = 2 The expression for E is now:

E = q(1− (x + y)) + q(1− (x + z)) + q(1− (y + z))− q(1− x)− q(1− y)− q(1− (x + y + z))

11



Although E(x, y, z) is different than in Case 1, the important observation is that if we consider
again the function g(δ) = E(x − δ, y + δ, z) then the derivative g′(δ) is the same as in Case 1 and
hence the same analysis shows that E(0, x+ y, z) ≤ E(x, y, z). But if x = 0, then y2 identifies with
y4 and the inequality reduces to the triangle inequality on y0,y1,y3.

To complete the proof, it remains to prove Proposition 2.

Proof of Proposition 2 : Fix a configuration for u1,u2,u3 and as before let x = 2
n |P1|,

y = 2
n |P2|, z = 2

n |P3|, and w = 2
n |P0|, where w > 0. Consider a vector u4 that has all −1’s in

P0. Let Hi = 2
nH(ui,u4), where H(ui,u4) is the Hamming distance from u4 to ui, i = 1, 2, 3. It

suffices to show that replacing the P0-part of u4 with 1’s (which means adding w to each Hi) does
not decrease the LHS of (12), i.e., that:

q(1−H1) + q(1−H2) + q(1−H3) ≥ q(1− (H1 + w)) + q(1− (H2 + w)) + q(1− (H3 + w)) (13)

Because of the convexity of q, the cases that we need to consider are characterized by whether
u4 is 1 or −1 on each of P1, P2, P3. By symmetry there are 4 cases to check, corresponding to
the different values of ξ(u4). In most of these cases, we use the following argument: consider
the function g(δ) = q(1 − (H1 + δ)) + q(1 − (H2 + δ)) + q(1 − (H3 + δ)), where δ ∈ [0, w]. Let
ai = 1− (Hi + δ). The derivative g′(δ) is:

g′(δ) = −(q′(a1) + q′(a2) + q′(a3)) = −2t(a2t−1
1 + a2t−1

2 + a2t−1
3 + 3λ2t−1)

If we show that the derivative is negative for any δ ∈ [0, w], that would imply that g(0) ≥ g(w) and
hence we are done since we have a more violating configuration if we do not add w to the Hamming
distances.
Case 1: ξ(u4) = 0

In this case H1 = x, H2 = y, H3 = z. Note that x + y + z + w = 2. Hence, if Hi ≥ 1 for some
i, say for H1, then H2 + δ ≤ 1 and H3 + δ ≤ 1. This implies that a2 ≥ 0 and a3 ≥ 0. Thus

g′(δ) ≤ −(−1 + 3λ2t−1) ≤ 1− 3/e < 0

since λ2t−1 = (1− 1
2t)

2t−1 ≥ 1/e. Hence we are done.
Therefore, we can assume that Hi < 1 for all i, i.e., 1−Hi ≥ 0. We now compare the LHS and

RHS of (13). In particular we claim that each term q(1−Hi) is at least as big as the corresponding
term q(1 − (Hi + w)). This is because of the form of the function q. Note that q is increasing in
[0, 1] and also that the value of q at any point x ∈ [0, 1] is greater than the value of q at any point
y ∈ [−1, 0). Therefore since 1 −Hi > 0 and since we only subtract w from each point, it follows
that (13) holds.
Case 2: ξ(u4) = 1

Assume without loss of generality that u4 is 1 on P1 only. In this case, H1 = 0, H2 = x+ y and
H3 = x + z. The LHS of inequality (13) is now:

LHS = q(1) + q(1− (x + y)) + q(1− (x + z))

whereas the RHS is:

RHS = q(1− w) + q(1− (x + y + w)) + q(1− (x + z + w)) = q(1− w) + q(−1 + z) + q(−1 + y)

by using the fact that x + y + w = 2− z.
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Let α1 = 1, α2 = 1 − (x + y), α3 = 1 − (x + z). The LHS is the sum of the values of q at
these points whereas the RHS is the sum of the values of q after shifting each point αi to the left
by w. Let α′i = αi − w. The difference ∆ = q(1) − q(1 − w) will always be positive since q(1) is
the highest value that q achieves in [−1, 1]. Therefore to show that (13) holds it is enough to show
that the potential gain in q from shifting α2 and α3 is at most ∆. Suppose not and consider such a
configuration. This means that either q(α′2) > q(α2) or q(α′3) > q(α3) or both. We consider the case
that both points achieve a higher value after being shifted. The same arguments apply if we have
only one point that improves its value. Hence we assume that q(α′2) > q(α2) and q(α′3) > q(α3).
Before we proceed, we state some properties of q, which can be easily verified.

Claim 1 The function q is decreasing in [−1,−λ] and increasing in [−λ, 1]. Furthermore, for any
2 points x, y such that x ∈ [−1, 2− 3λ] and y ≥ 2− 3λ, q(y) ≥ q(x).

Using the above claim, we argue about the location of α2 and α3. If α2 ≥ 2 − 3λ ≥ −λ,
then q(α2) ≥ q(α′2). Thus both α2 and α3 must belong to [−1, 2 − 3λ] = [−1,−1 + 3

2t ]. We will
restrict further the location of α2 and α3 by making some more observations about q. The interval
[−1, 2− 3λ] is the union of A1 = [−1,−λ] and A2 = [−λ, 2− 3λ] and we know q is decreasing in A1

and increasing in A2. We claim that α2, α3 should belong to A1 in the worst possible violation of
(13). To see this, suppose α2 ∈ A2 and α3 ∈ A2 (the case with α2 ∈ A2, α3 ∈ A1 can be handled
similarly). We know that q is the sum of a linear function and the function x2t. Hence when we
shift the 3 points to the left, the difference q(1) − q(1 − w) is at least as big as a positive term
that is linear in w. This difference has to be counterbalanced by the differences q(α′2)− q(α2) and
q(α′3)− q(α3). However the form of q ensures that there is a point ζ2 ∈ A1 such that q(α2) = q(ζ2)
and ditto for α3. By considering the configuration where α2 ≡ ζ2 and α3 ≡ ζ3 we will have the
same contribution from the terms q(α′2)− q(α2) and q(α′3)− q(α3) and at the same time a smaller
w.

Therefore we may assume that w ≤ |A1| = 1
2t . By substituting the value of q, (13) is equivalent

to showing that:

1− (1− w)2t + 6tλ2t−1w ≥ (α2 − w)2t − α2t
2 + (α3 − w)2t − α2t

3

It is easy to see that the difference 1 − (1 − w)2t is greater than or equal to the difference
(α2 − w)2t − α2t

2 by convexity. Hence it suffices to show:

6tλ2t−1w ≥ (α3 − w)2t − α2t
3

We know that the LHS is at least (6t/e)w. The difference (α3 −w)2t − α2t
3 can be estimated using

the derivatives of x2t and turns out to be at most (6t/e)w. Therefore no configuration in this case
can violate (13).
Case 3: ξ(u4) = 2

Assume that u4 is 1 on P1 and P2. Now H1 = y, H2 = x, H3 = x + y + z. The LHS and RHS
of (13) are:

LHS = q(1− y) + q(1− x) + q(1− (x + y + z))
RHS = q(1− (y + w)) + q(1− (x + w)) + q(−1)

As in case 2, let α1 = 1−y, α2 = 1−x and α3 = 1−(x+y+z) be the 3 points before shifting by
w. First note that either α1 > 0 or α2 > 0. This comes from the constraint that x + y + z + w = 2.
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Assume that α1 > 0. Hence q(α1) − q(α1 − w) > 0. If α2 6∈ [−1, 2 − 3λ] then we would be done
because by the above claim, q(α2)−q(α2−w) > 0. Therefore the only way that (13) can be violated
is if the nonlinear term (α3 −w)2t −α2t

3 can compensate for the loss for the other terms. It can be
easily checked that this cannot happen. Hence we may assume that both α2, α3 ∈ [−1, 2− 3λ] and
that q(α2 −w) > q(α2), q(α3 −w) > q(α3). The rest of the analysis is based on arguments similar
to case 2 and we omit it.
Case 4: ξ(u4) = 3 This case can also be done using similar arguments with case 2 and 3.

5 Lower bound for embedding negative type metrics into `1

While, in view of Theorem 3, Charikar’s metric does not supply an example that is far from `1,
we may still (partly motivated by Theorem 2) utilize the idea of “tensoring the cube” and then
adding some more points in order to achieve negative type metrics that are not `1 embeddable. Our
starting point is an isoperimetric inequality on the cube that generalizes the standard one. Such
a setting is also relevant in [20, 22] where harmonic analysis tools are used to bound expansion;
these tools are unlikely to be applicable to our case where the interest and improvements lie in the
constants.

Theorem 1 (Generalized Isoperimetric inequality) For every set S ⊆ Qn,

|E(S, Sc)| ≥ |S|(n− log2 |S|) + p(S).

where p(S) denotes the number of vertices u ∈ S such that −u ∈ S.

Proof. We use induction on n. Divide Qn into two sets V1 = {u : u1 = 1} and V−1 = {u : u1 =
−1}. Let S1 = S ∩ V1 and S−1 = S ∩ V−1. Now, E(S, Sc) is the disjoint union of E(S1, V1 \ S1),
E(S−1, V−1 \ S−1), and E(S1, V−1 \ S−1) ∪ E(S−1, V1 \ S1). Define the operator ·̂ on Qn to be the
projection onto the last n− 1 coordinates, so for example Ŝ1 = {u ∈ Qn−1 : (1,u) ∈ S1}. It is easy
to observe that |E(S1, V−1 \ S−1) ∪ E(S−1, V1 \ S1)| = |Ŝ1∆Ŝ−1|. We argue that

p(S) + |S1| − |S−1| ≤ p(Ŝ1) + p(Ŝ−1) + |Ŝ1∆Ŝ−1|. (14)

To prove (14), for every u ∈ {−1, 1}n−1, we show that the contribution of (1,u), (1,−u), (−1,u),
and (−1,−u) to the right hand side of (14) is at least as large as their contribution to the left
hand side: This is trivial if the contribution of these four vectors to p(S) is not more than their
contribution to p(Ŝ1), and p(Ŝ−1). We therefore assume that the contribution of the four vectors
to p(S), p(Ŝ1), and p(Ŝ−1) are 2, 0, and 0, respectively. Then without loss of generality we may
assume that (1,u), (−1,−u) ∈ S and (1,−u), (−1,u) 6∈ S, and in this case the contribution to both
sides is 2. By induction hypothesis and (14) we get

|E(S, Sc)| = |E(Ŝ1, Qn−1 \ Ŝ1|+ |E(Ŝ−1, Qn−1 \ Ŝ−1|+ |Ŝ1∆Ŝ−1|
≥ |S1|(n− 1− log2 |S1|) + p(Ŝ1) + |S−1|(n− 1− log2 |S−1|) + p(Ŝ−1) + |Ŝ1∆Ŝ−1|
≥ |S|n− |S| − (|S1| log2 |S1|+ |S−1| log2 |S−1|) + p(Ŝ1) + p(Ŝ−1) + |Ŝ1∆Ŝ−1|
≥ |S|n− (2|S−1|+ |S1| log2 |S1|+ |S−1| log2 |S−1|) + p(S).

Now the lemma follows from the fact that 2|S−1| + |S1| log2 |S1| + |S−1| log2 |S−1| ≤ |S| log2 |S|,
which can be obtained using easy calculus.
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We call a set S ⊆ Qn symmetric if −u ∈ S whenever u ∈ S. Note that p(S) = |S| for symmetric
sets S.

Corollary 1 For every symmetric set S ⊆ Qn

|E(S, Sc)| ≥ |S|(n− log2 |S|+ 1).

The corollary above implies the following Poincaré inequality.

Proposition 3 (Poincaré inequality for the cube and an additional point) Let f : Qn ∪ {0} → Rm

satisfy that f(u) = f(−u) for every u ∈ Qn, and let α = ln 2
14−8 ln 2 .

Then the following Poincaré inequality holds.

1
2n
· 8
7
(4α + 1/2)

∑
u,v∈Qn

‖f(u)− f(v)‖1 ≤ α
∑

uv∈E

‖f(u)− f(v)‖1 +
1
2

∑
u∈Qn

‖f(u)− f(0)‖1

Proof. It is enough to prove the above inequality for f : V → {0, 1}. We may assume without loss
of generality that f(0) = 0. Associating S with {u : f(u) = 1}, the inequality of the proposition
reduces to

1
2n

8
7
(4α + 1/2)|S||Sc| ≤ α|E(S, Sc)|+ |S|/2, (15)

where S is a symmetric set, owing to the condition f(u) = f(−u). From the isoperimetric inequality
of Theorem 1 we have that |E(S, Sc)| ≥ |S|(x + 1) for x = n− log2 |S| and so(

α(x + 1) + 1/2
1− 2−x

)
1
2n
|S||Sc)| ≤ α|E(S, Sc)|+ |S|/2.

Lemma 1 below shows that α(x+1)+1/2
1−2−x attains its minimum in [1,∞) at x = 3 whence α(x+1)+1/2

1−2−x ≥
4α+1/2

7/8 , and Inequality (15) is proven.

Lemma 1 The function f(x) = α(x+1)+1/2
1−2−x for α = ln 2

14−8 ln 2 attains its minimum in [1,∞] at x = 3.

Proof. The derivative of f is

1− 2−x − (α(x + 1) + 1/2) ln(2)2−x

(1− 2−x)2
.

It is easy to see that f ′(3) = 0, f(1) = 4α + 1 > 8/7, and limx→∞ f(x) = ∞. So it is sufficient to
show that

g(x) = 1− 2−x − (α(x + 1) + 1/2) ln(2)2−x,

is an increasing function in the interval [1,∞). To show this note that

g′(x) = 2−x ln(2) (1− α + αx ln(2) + α ln(2)) > 0,

for x ≥ 1.

Theorem 6 Let V = {ũ : u ∈ Qn} ∪ {0}, where ũ = u ⊗ u. Then for the semi-metric space
X = (V, ‖ · ‖2) we have c1(X) ≥ 8

7 − ε, for every ε > 0 and sufficiently large n.
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Proof. We start with an informal description of the proof. The heart of the argument is showing
that the cuts that participate in a supposedly good `1 embedding of X cannot be balanced on one
hand, and cannot be imbalanced on the other. First notice that the average distance in X is almost
double that of the distance between 0 and any other point (achieving this in a cube structure
without violating the triangle inequality was where the tensor operation came in handy). For a
cut metric on the points of X, such a relation only occurs for very imbalanced cuts; hence the
representation of balanced cuts in a low distortion embedding cannot be large. On the other hand,
comparing the (overall) average distance to the average distance between neighbouring points in
the cube shows that any good embedding must use cuts with very small edge expansion, and such
cuts in the cube must be balanced (the same argument says that one must use the dimension cuts
when embedding the hamming cube into `1 with low distortion). The fact that only symmetric cuts
participate in the `1 embedding (or else the distortion becomes infinite due to the tensor operation)
enables us to use the stronger isoperimetric inequality which leads to the current lower bound. We
now proceed to the proof.

We may view X as a distance function with points in u ∈ Qn ∪ {0}, and d(u,v) = ‖ũ − ṽ‖2.
We first notice that X is indeed a metric space, i.e., that triangle inequalities are satisfied: notice
that X \ {0} is a subset of {−1, 1}n2

. Therefore, the square Euclidean distances is the same
(upto a constant) as their `1 distance. Hence, the only triangle inequality we need to check is
‖ũ − ṽ‖2 ≤ ‖ũ − 0‖2 + ‖ṽ − 0‖2, which is implied by the fact that ũ · ṽ = (u · v)2 is always
nonnegative.

For every u,v ∈ Qn, we have d(u,0) = ‖ũ‖2 = ũ · ũ = (u · u)2 = n2, and d(u,v) = ‖ũ− ṽ‖2 =
‖ũ‖2+‖ṽ‖2−2(ũ · ṽ) = 2n2−2(u ·v)2. In particular, if uv ∈ E we have d(u,v) = 2n2−2(n−2)2 =
8(n− 1). We next notice that∑

u,v∈Qn

d(u,v) = 22n × 2n2 − 2
∑
u,v

(u · v)2 = 22n × 2n2 − 2
∑
u,v

(
∑

i

uivi)2 = 22n(2n2 − 2n),

as
∑

u,v uiviujvj is 22n when i = j, and 0 otherwise.
Let f be a nonexpanding embedding of X into `1. Notice that

d(u,−u) = 2n2 − 2(u · v)2 = 0,

and so any embedding with finite distortion must satisfy f(u) = f(−u). Therefore Inequality (3)
can be used and we get that

α
∑

uv∈E ‖f(ũ)− f(ṽ)‖1 + 1
2

∑
u∈Qn

‖f(ũ)− f(0)‖1

1
2n

∑
u,v∈Qn

‖f(ũ)− f(ṽ)‖1
≥ 8

7
(4α + 1/2). (16)

On the other hand,

α
∑

uv∈E d(u,v) + 1
2

∑
u∈Qn

d(u,0)
1
2n

∑
u,v∈Qn

d(u,v)
8α(n2 − n) + n2

2n2 − 2n
= 4α + 1/2 + o(1). (16)

The discrepancy between (16) and (16) shows that for every ε > 0 and for sufficiently large n,
the required distortion of V into `1 is at least 8/7− ε.
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6 Discussion

We have considered the metric characterization of SDP relaxations of Vertex Cover and specifi-
cally related the amount of “`1 information” that is enforced with the resulting integrality gap. We
showed that no integrality gap exists in the most powerful extreme, i.e., when `1 embeddability of
the solution is enforced. We further demonstrated that integrality gap is not a continuous function
of the possible distortion that is allowed, as it jumps from 1 to 2 − o(1) when the allowed distor-
tion changes from 1 to 1 + δ. The natural extensions of these results are to (i) check whether the
addition of more k-gonal inequalities (something that can be done efficiently for any finite number
of such inequalities) can reduce the integrality gap or prove otherwise. It is interesting to note that
related questions are discussed in the context of LP relaxations of Vertex Cover and Max Cut
in [3, 11] (ii) use the nonembeddability construction and technique in Section 5 to find negative
type metrics that incur more significant distortion when embedded into `1.

It is important to understand our results in the context of the Lift and Project system defined by
Lovász and Schrijver [23], specifically the one that uses positive semidefinite constraints, called LS+

(see [2] for relevant discussion). As was mentioned in the introduction, a new result of Georgiou,
Magen, Pitassi and Tourlakis [13] shows that after a super-constant number of rounds of LS+, the
integrality gap is still 2−o(1). To relate LS+ to SDPs one needs to use the conversion yi = 2zi−z0,
where yi is as usual the vectors of the SDP solution and the zi are the Cholesky decomposition of
the matrix of the lifted variables in the LS+ system. With this relation in mind, it can be shown
that the triangle inequalities with respect to v0 are implied after as little as one round of LS+ and
so [13] extends Charikar’s result on the SDP with these types of triangle inequalities. However,
at least for some graphs, triangle inequalities not involving v0 as well as pentagonal inequalities
are not implied by any number of rounds of LS+. To see this, consider the application of LS+

system to Vertex Cover when the instance is the empty graph. Since for this instance the Linear
Program relaxation is tight, lifted inequalities must appear in the first round or not at all. But it is
easy to see that even the general triangle inequalities do not appear after one round and thus will
never appear. It is important to note that for the graphs used in [13] (which are the same as the
ones we use here) we do not know whether the general triangle inequality and whether pentagonal
inequalities are implied after a few rounds of LS+.

Last, we suggest looking at connections of `1-embeddability and integrality gaps for other NP-
hard problems. Under certain circumstances, such connections may be used to convert hardness
results of combinatorial problems into hardness results of approximating `1 distortion.
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