55,457 research outputs found

    Mixed unit interval graphs

    Get PDF
    AbstractThe class of intersection graphs of unit intervals of the real line whose ends may be open or closed is a strict superclass of the well-known class of unit interval graphs. We pose a conjecture concerning characterizations of such mixed unit interval graphs, verify parts of it in general, and prove it completely for diamond-free graphs. In particular, we characterize diamond-free mixed unit interval graphs by means of an infinite family of forbidden induced subgraphs, and we show that a diamond-free graph is mixed unit interval if and only if it has intersection representations using unit intervals such that all ends of the intervals are integral

    Completion of the mixed unit interval graphs hierarchy

    Full text link
    We describe the missing class of the hierarchy of mixed unit interval graphs, generated by the intersection graphs of closed, open and one type of half-open intervals of the real line. This class lies strictly between unit interval graphs and mixed unit interval graphs. We give a complete characterization of this new class, as well as quadratic-time algorithms that recognize graphs from this class and produce a corresponding interval representation if one exists. We also mention that the work in arXiv:1405.4247 directly extends to provide a quadratic-time algorithm to recognize the class of mixed unit interval graphs.Comment: 17 pages, 36 figures (three not numbered). v1 Accepted in the TAMC 2015 conference. The recognition algorithm is faster in v2. One graph was not listed in Theorem 7 of v1 of this paper v3 provides a proposition to recognize the mixed unit interval graphs in quadratic time. v4 is a lot cleare

    A Characterization of Mixed Unit Interval Graphs

    Full text link
    We give a complete characterization of mixed unit interval graphs, the intersection graphs of closed, open, and half-open unit intervals of the real line. This is a proper superclass of the well known unit interval graphs. Our result solves a problem posed by Dourado, Le, Protti, Rautenbach and Szwarcfiter (Mixed unit interval graphs, Discrete Math. 312, 3357-3363 (2012)).Comment: 17 pages, referees' comments adde

    Sparse Maximum-Entropy Random Graphs with a Given Power-Law Degree Distribution

    Full text link
    Even though power-law or close-to-power-law degree distributions are ubiquitously observed in a great variety of large real networks, the mathematically satisfactory treatment of random power-law graphs satisfying basic statistical requirements of realism is still lacking. These requirements are: sparsity, exchangeability, projectivity, and unbiasedness. The last requirement states that entropy of the graph ensemble must be maximized under the degree distribution constraints. Here we prove that the hypersoft configuration model (HSCM), belonging to the class of random graphs with latent hyperparameters, also known as inhomogeneous random graphs or WW-random graphs, is an ensemble of random power-law graphs that are sparse, unbiased, and either exchangeable or projective. The proof of their unbiasedness relies on generalized graphons, and on mapping the problem of maximization of the normalized Gibbs entropy of a random graph ensemble, to the graphon entropy maximization problem, showing that the two entropies converge to each other in the large-graph limit

    Sparse Maximum-Entropy Random Graphs with a Given Power-Law Degree Distribution

    Full text link
    Even though power-law or close-to-power-law degree distributions are ubiquitously observed in a great variety of large real networks, the mathematically satisfactory treatment of random power-law graphs satisfying basic statistical requirements of realism is still lacking. These requirements are: sparsity, exchangeability, projectivity, and unbiasedness. The last requirement states that entropy of the graph ensemble must be maximized under the degree distribution constraints. Here we prove that the hypersoft configuration model (HSCM), belonging to the class of random graphs with latent hyperparameters, also known as inhomogeneous random graphs or WW-random graphs, is an ensemble of random power-law graphs that are sparse, unbiased, and either exchangeable or projective. The proof of their unbiasedness relies on generalized graphons, and on mapping the problem of maximization of the normalized Gibbs entropy of a random graph ensemble, to the graphon entropy maximization problem, showing that the two entropies converge to each other in the large-graph limit

    Fast quantum noise in Landau-Zener transition

    Get PDF
    We show by direct calculation starting from a microscopic model that the two-state system with time-dependent energy levels in the presence of fast quantum noise obeys the master equation. The solution of master equation is found analytically and analyzed in a broad range of parameters. The fast transverse noise affects the transition probability during much longer time (the accumulation time) than the longitudinal one. The action of the fast longitudinal noise is restricted by the shorter Landau-Zener time, the same as in the regular Landau-Zener process. The large ratio of time scales allows solving the Landau-Zener problem with longitudinal noise only, then solving the same problem with the transverse noise only and matching the two solutions. The correlation of the longitudinal and transverse noise renormalizes the Landau-Zener transition matrix element and can strongly enhance the survival probability, whereas the transverse noise always reduces it. Both longitudinal and transverse noise reduce the coherence. The decoherence time is inverse proportional to the noise intensity. If the noise is fast, its intensity at which the multi-quantum processes become essential corresponds to a deeply adiabatic regime. We briefly discuss possible applications of the general theory to the problem of the qubit decoherence and to the spin relaxation of molecular magnets.Comment: 12 pages, 8 figure

    Unit Mixed Interval Graphs

    Get PDF
    In this paper we extend the work of Rautenbach and Szwarcfiter by giving a structural characterization of graphs that can be represented by the intersection of unit intervals that may or may not contain their endpoints. A characterization was proved independently by Joos, however our approach provides an algorithm that produces such a representation, as well as a forbidden graph characterization

    Performance of distributed mechanisms for flow admission in wireless adhoc networks

    Full text link
    Given a wireless network where some pairs of communication links interfere with each other, we study sufficient conditions for determining whether a given set of minimum bandwidth quality-of-service (QoS) requirements can be satisfied. We are especially interested in algorithms which have low communication overhead and low processing complexity. The interference in the network is modeled using a conflict graph whose vertices correspond to the communication links in the network. Two links are adjacent in this graph if and only if they interfere with each other due to being in the same vicinity and hence cannot be simultaneously active. The problem of scheduling the transmission of the various links is then essentially a fractional, weighted vertex coloring problem, for which upper bounds on the fractional chromatic number are sought using only localized information. We recall some distributed algorithms for this problem, and then assess their worst-case performance. Our results on this fundamental problem imply that for some well known classes of networks and interference models, the performance of these distributed algorithms is within a bounded factor away from that of an optimal, centralized algorithm. The performance bounds are simple expressions in terms of graph invariants. It is seen that the induced star number of a network plays an important role in the design and performance of such networks.Comment: 21 pages, submitted. Journal version of arXiv:0906.378

    Functionals of the Brownian motion, localization and metric graphs

    Full text link
    We review several results related to the problem of a quantum particle in a random environment. In an introductory part, we recall how several functionals of the Brownian motion arise in the study of electronic transport in weakly disordered metals (weak localization). Two aspects of the physics of the one-dimensional strong localization are reviewed : some properties of the scattering by a random potential (time delay distribution) and a study of the spectrum of a random potential on a bounded domain (the extreme value statistics of the eigenvalues). Then we mention several results concerning the diffusion on graphs, and more generally the spectral properties of the Schr\"odinger operator on graphs. The interest of spectral determinants as generating functions characterizing the diffusion on graphs is illustrated. Finally, we consider a two-dimensional model of a charged particle coupled to the random magnetic field due to magnetic vortices. We recall the connection between spectral properties of this model and winding functionals of the planar Brownian motion.Comment: Review article. 50 pages, 21 eps figures. Version 2: section 5.5 and conclusion added. Several references adde
    corecore