3,903 research outputs found

    DMVP: Foremost Waypoint Coverage of Time-Varying Graphs

    Full text link
    We consider the Dynamic Map Visitation Problem (DMVP), in which a team of agents must visit a collection of critical locations as quickly as possible, in an environment that may change rapidly and unpredictably during the agents' navigation. We apply recent formulations of time-varying graphs (TVGs) to DMVP, shedding new light on the computational hierarchy RβŠƒBβŠƒP\mathcal{R} \supset \mathcal{B} \supset \mathcal{P} of TVG classes by analyzing them in the context of graph navigation. We provide hardness results for all three classes, and for several restricted topologies, we show a separation between the classes by showing severe inapproximability in R\mathcal{R}, limited approximability in B\mathcal{B}, and tractability in P\mathcal{P}. We also give topologies in which DMVP in R\mathcal{R} is fixed parameter tractable, which may serve as a first step toward fully characterizing the features that make DMVP difficult.Comment: 24 pages. Full version of paper from Proceedings of WG 2014, LNCS, Springer-Verla

    Shortest, Fastest, and Foremost Broadcast in Dynamic Networks

    Full text link
    Highly dynamic networks rarely offer end-to-end connectivity at a given time. Yet, connectivity in these networks can be established over time and space, based on temporal analogues of multi-hop paths (also called {\em journeys}). Attempting to optimize the selection of the journeys in these networks naturally leads to the study of three cases: shortest (minimum hop), fastest (minimum duration), and foremost (earliest arrival) journeys. Efficient centralized algorithms exists to compute all cases, when the full knowledge of the network evolution is given. In this paper, we study the {\em distributed} counterparts of these problems, i.e. shortest, fastest, and foremost broadcast with termination detection (TDB), with minimal knowledge on the topology. We show that the feasibility of each of these problems requires distinct features on the evolution, through identifying three classes of dynamic graphs wherein the problems become gradually feasible: graphs in which the re-appearance of edges is {\em recurrent} (class R), {\em bounded-recurrent} (B), or {\em periodic} (P), together with specific knowledge that are respectively nn (the number of nodes), Ξ”\Delta (a bound on the recurrence time), and pp (the period). In these classes it is not required that all pairs of nodes get in contact -- only that the overall {\em footprint} of the graph is connected over time. Our results, together with the strict inclusion between PP, BB, and RR, implies a feasibility order among the three variants of the problem, i.e. TDB[foremost] requires weaker assumptions on the topology dynamics than TDB[shortest], which itself requires less than TDB[fastest]. Reversely, these differences in feasibility imply that the computational powers of RnR_n, BΞ”B_\Delta, and PpP_p also form a strict hierarchy

    Palgol: A High-Level DSL for Vertex-Centric Graph Processing with Remote Data Access

    Full text link
    Pregel is a popular distributed computing model for dealing with large-scale graphs. However, it can be tricky to implement graph algorithms correctly and efficiently in Pregel's vertex-centric model, especially when the algorithm has multiple computation stages, complicated data dependencies, or even communication over dynamic internal data structures. Some domain-specific languages (DSLs) have been proposed to provide more intuitive ways to implement graph algorithms, but due to the lack of support for remote access --- reading or writing attributes of other vertices through references --- they cannot handle the above mentioned dynamic communication, causing a class of Pregel algorithms with fast convergence impossible to implement. To address this problem, we design and implement Palgol, a more declarative and powerful DSL which supports remote access. In particular, programmers can use a more declarative syntax called chain access to naturally specify dynamic communication as if directly reading data on arbitrary remote vertices. By analyzing the logic patterns of chain access, we provide a novel algorithm for compiling Palgol programs to efficient Pregel code. We demonstrate the power of Palgol by using it to implement several practical Pregel algorithms, and the evaluation result shows that the efficiency of Palgol is comparable with that of hand-written code.Comment: 12 pages, 10 figures, extended version of APLAS 2017 pape
    • …
    corecore