334,020 research outputs found

    Mixed-integer Quadratic Programming is in NP

    Full text link
    Mixed-integer quadratic programming is the problem of optimizing a quadratic function over points in a polyhedral set where some of the components are restricted to be integral. In this paper, we prove that the decision version of mixed-integer quadratic programming is in NP, thereby showing that it is NP-complete. This is established by showing that if the decision version of mixed-integer quadratic programming is feasible, then there exists a solution of polynomial size. This result generalizes and unifies classical results that quadratic programming is in NP and integer linear programming is in NP

    An exact method for a discrete multiobjective linear fractional optimization

    Get PDF
    Integer linear fractional programming problem with multiple objective MOILFP is an important field of research and has not received as much attention as did multiple objective linear fractional programming. In this work, we develop a branch and cut algorithm based on continuous fractional optimization, for generating the whole integer efficient solutions of the MOILFP problem. The basic idea of the computation phase of the algorithm is to optimize one of the fractional objective functions, then generate an integer feasible solution. Using the reduced gradients of the objective functions, an efficient cut is built and a part of the feasible domain not containing efficient solutions is truncated by adding this cut. A sample problem is solved using this algorithm, and the main practical advantages of the algorithm are indicated.multiobjective programming, integer programming, linear fractional programming, branch and cut

    On Integer Programming, Discrepancy, and Convolution

    Full text link
    Integer programs with a constant number of constraints are solvable in pseudo-polynomial time. We give a new algorithm with a better pseudo-polynomial running time than previous results. Moreover, we establish a strong connection to the problem (min, +)-convolution. (min, +)-convolution has a trivial quadratic time algorithm and it has been conjectured that this cannot be improved significantly. We show that further improvements to our pseudo-polynomial algorithm for any fixed number of constraints are equivalent to improvements for (min, +)-convolution. This is a strong evidence that our algorithm's running time is the best possible. We also present a faster specialized algorithm for testing feasibility of an integer program with few constraints and for this we also give a tight lower bound, which is based on the SETH.Comment: A preliminary version appeared in the proceedings of ITCS 201

    Algorithms for Highly Symmetric Linear and Integer Programs

    Get PDF
    This paper deals with exploiting symmetry for solving linear and integer programming problems. Basic properties of linear representations of finite groups can be used to reduce symmetric linear programming to solving linear programs of lower dimension. Combining this approach with knowledge of the geometry of feasible integer solutions yields an algorithm for solving highly symmetric integer linear programs which only takes time which is linear in the number of constraints and quadratic in the dimension.Comment: 21 pages, 1 figure; some references and further comments added, title slightly change

    Nonlinear Integer Programming

    Full text link
    Research efforts of the past fifty years have led to a development of linear integer programming as a mature discipline of mathematical optimization. Such a level of maturity has not been reached when one considers nonlinear systems subject to integrality requirements for the variables. This chapter is dedicated to this topic. The primary goal is a study of a simple version of general nonlinear integer problems, where all constraints are still linear. Our focus is on the computational complexity of the problem, which varies significantly with the type of nonlinear objective function in combination with the underlying combinatorial structure. Numerous boundary cases of complexity emerge, which sometimes surprisingly lead even to polynomial time algorithms. We also cover recent successful approaches for more general classes of problems. Though no positive theoretical efficiency results are available, nor are they likely to ever be available, these seem to be the currently most successful and interesting approaches for solving practical problems. It is our belief that the study of algorithms motivated by theoretical considerations and those motivated by our desire to solve practical instances should and do inform one another. So it is with this viewpoint that we present the subject, and it is in this direction that we hope to spark further research.Comment: 57 pages. To appear in: M. J\"unger, T. Liebling, D. Naddef, G. Nemhauser, W. Pulleyblank, G. Reinelt, G. Rinaldi, and L. Wolsey (eds.), 50 Years of Integer Programming 1958--2008: The Early Years and State-of-the-Art Surveys, Springer-Verlag, 2009, ISBN 354068274
    corecore