334,020 research outputs found
Mixed-integer Quadratic Programming is in NP
Mixed-integer quadratic programming is the problem of optimizing a quadratic
function over points in a polyhedral set where some of the components are
restricted to be integral. In this paper, we prove that the decision version of
mixed-integer quadratic programming is in NP, thereby showing that it is
NP-complete. This is established by showing that if the decision version of
mixed-integer quadratic programming is feasible, then there exists a solution
of polynomial size. This result generalizes and unifies classical results that
quadratic programming is in NP and integer linear programming is in NP
An exact method for a discrete multiobjective linear fractional optimization
Integer linear fractional programming problem with multiple objective MOILFP is an important field of research and has not received as much attention as did multiple objective linear fractional programming. In this work, we develop a branch and cut algorithm based on continuous fractional optimization, for generating the whole integer efficient solutions of the MOILFP problem. The basic idea of the computation phase of the algorithm is to optimize one of the fractional objective functions, then generate an integer feasible solution. Using the reduced gradients of the objective functions, an efficient cut is built and a part of the feasible domain not containing efficient solutions is truncated by adding this cut. A sample problem is solved using this algorithm, and the main practical advantages of the algorithm are indicated.multiobjective programming, integer programming, linear fractional programming, branch and cut
On Integer Programming, Discrepancy, and Convolution
Integer programs with a constant number of constraints are solvable in
pseudo-polynomial time. We give a new algorithm with a better pseudo-polynomial
running time than previous results. Moreover, we establish a strong connection
to the problem (min, +)-convolution. (min, +)-convolution has a trivial
quadratic time algorithm and it has been conjectured that this cannot be
improved significantly. We show that further improvements to our
pseudo-polynomial algorithm for any fixed number of constraints are equivalent
to improvements for (min, +)-convolution. This is a strong evidence that our
algorithm's running time is the best possible. We also present a faster
specialized algorithm for testing feasibility of an integer program with few
constraints and for this we also give a tight lower bound, which is based on
the SETH.Comment: A preliminary version appeared in the proceedings of ITCS 201
Algorithms for Highly Symmetric Linear and Integer Programs
This paper deals with exploiting symmetry for solving linear and integer
programming problems. Basic properties of linear representations of finite
groups can be used to reduce symmetric linear programming to solving linear
programs of lower dimension. Combining this approach with knowledge of the
geometry of feasible integer solutions yields an algorithm for solving highly
symmetric integer linear programs which only takes time which is linear in the
number of constraints and quadratic in the dimension.Comment: 21 pages, 1 figure; some references and further comments added, title
slightly change
Nonlinear Integer Programming
Research efforts of the past fifty years have led to a development of linear
integer programming as a mature discipline of mathematical optimization. Such a
level of maturity has not been reached when one considers nonlinear systems
subject to integrality requirements for the variables. This chapter is
dedicated to this topic.
The primary goal is a study of a simple version of general nonlinear integer
problems, where all constraints are still linear. Our focus is on the
computational complexity of the problem, which varies significantly with the
type of nonlinear objective function in combination with the underlying
combinatorial structure. Numerous boundary cases of complexity emerge, which
sometimes surprisingly lead even to polynomial time algorithms.
We also cover recent successful approaches for more general classes of
problems. Though no positive theoretical efficiency results are available, nor
are they likely to ever be available, these seem to be the currently most
successful and interesting approaches for solving practical problems.
It is our belief that the study of algorithms motivated by theoretical
considerations and those motivated by our desire to solve practical instances
should and do inform one another. So it is with this viewpoint that we present
the subject, and it is in this direction that we hope to spark further
research.Comment: 57 pages. To appear in: M. J\"unger, T. Liebling, D. Naddef, G.
Nemhauser, W. Pulleyblank, G. Reinelt, G. Rinaldi, and L. Wolsey (eds.), 50
Years of Integer Programming 1958--2008: The Early Years and State-of-the-Art
Surveys, Springer-Verlag, 2009, ISBN 354068274
- …
