277,952 research outputs found

    Mechanism Design via Dantzig-Wolfe Decomposition

    Full text link
    In random allocation rules, typically first an optimal fractional point is calculated via solving a linear program. The calculated point represents a fractional assignment of objects or more generally packages of objects to agents. In order to implement an expected assignment, the mechanism designer must decompose the fractional point into integer solutions, each satisfying underlying constraints. The resulting convex combination can then be viewed as a probability distribution over feasible assignments out of which a random assignment can be sampled. This approach has been successfully employed in combinatorial optimization as well as mechanism design with or without money. In this paper, we show that both finding the optimal fractional point as well as its decomposition into integer solutions can be done at once. We propose an appropriate linear program which provides the desired solution. We show that the linear program can be solved via Dantzig-Wolfe decomposition. Dantzig-Wolfe decomposition is a direct implementation of the revised simplex method which is well known to be highly efficient in practice. We also show how to use the Benders decomposition as an alternative method to solve the problem. The proposed method can also find a decomposition into integer solutions when the fractional point is readily present perhaps as an outcome of other algorithms rather than linear programming. The resulting convex decomposition in this case is tight in terms of the number of integer points according to the Carath{\'e}odory's theorem

    ALPS: A Linear Program Solver

    Get PDF
    ALPS is a computer program which can be used to solve general linear program (optimization) problems. ALPS was designed for those who have minimal linear programming (LP) knowledge and features a menu-driven scheme to guide the user through the process of creating and solving LP formulations. Once created, the problems can be edited and stored in standard DOS ASCII files to provide portability to various word processors or even other linear programming packages. Unlike many math-oriented LP solvers, ALPS contains an LP parser that reads through the LP formulation and reports several types of errors to the user. ALPS provides a large amount of solution data which is often useful in problem solving. In addition to pure linear programs, ALPS can solve for integer, mixed integer, and binary type problems. Pure linear programs are solved with the revised simplex method. Integer or mixed integer programs are solved initially with the revised simplex, and the completed using the branch-and-bound technique. Binary programs are solved with the method of implicit enumeration. This manual describes how to use ALPS to create, edit, and solve linear programming problems. Instructions for installing ALPS on a PC compatible computer are included in the appendices along with a general introduction to linear programming. A programmers guide is also included for assistance in modifying and maintaining the program
    corecore