1,448 research outputs found

    On a Vizing-type integer domination conjecture

    Get PDF
    Given a simple graph GG, a dominating set in GG is a set of vertices SS such that every vertex not in SS has a neighbor in SS. Denote the domination number, which is the size of any minimum dominating set of GG, by γ(G)\gamma(G). For any integer k≥1k\ge 1, a function f:V(G)→{0,1,...,k}f : V (G) \rightarrow \{0, 1, . . ., k\} is called a \emph{{k}\{k\}-dominating function} if the sum of its function values over any closed neighborhood is at least kk. The weight of a {k}\{k\}-dominating function is the sum of its values over all the vertices. The {k}\{k\}-domination number of GG, γ{k}(G)\gamma_{\{k\}}(G), is defined to be the minimum weight taken over all {k}\{k\}-domination functions. Bre\v{s}ar, Henning, and Klav\v{z}ar (On integer domination in graphs and Vizing-like problems. \emph{Taiwanese J. Math.} {10(5)} (2006) pp. 1317--1328) asked whether there exists an integer k≥2k\ge 2 so that γ{k}(G□H)≥γ(G)γ(H)\gamma_{\{k\}}(G\square H)\ge \gamma(G)\gamma(H). In this note we use the Roman {2}\{2\}-domination number, γR2\gamma_{R2} of Chellali, Haynes, Hedetniemi, and McRae, (Roman {2}\{2\}-domination. \emph{Discrete Applied Mathematics} {204} (2016) pp. 22-28.) to prove that if GG is a claw-free graph and HH is an arbitrary graph, then γ{2}(G□H)≥γR2(G□H)≥γ(G)γ(H)\gamma_{\{2\}}(G\square H)\ge \gamma_{R2}(G\square H)\ge \gamma(G)\gamma(H), which also implies the conjecture for all k≥2k\ge 2.Comment: 8 page
    • …
    corecore