9,307 research outputs found

    A Satisfiability Algorithm for Sparse Depth Two Threshold Circuits

    Full text link
    We give a nontrivial algorithm for the satisfiability problem for cn-wire threshold circuits of depth two which is better than exhaustive search by a factor 2^{sn} where s= 1/c^{O(c^2)}. We believe that this is the first nontrivial satisfiability algorithm for cn-wire threshold circuits of depth two. The independently interesting problem of the feasibility of sparse 0-1 integer linear programs is a special case. To our knowledge, our algorithm is the first to achieve constant savings even for the special case of Integer Linear Programming. The key idea is to reduce the satisfiability problem to the Vector Domination Problem, the problem of checking whether there are two vectors in a given collection of vectors such that one dominates the other component-wise. We also provide a satisfiability algorithm with constant savings for depth two circuits with symmetric gates where the total weighted fan-in is at most cn. One of our motivations is proving strong lower bounds for TC^0 circuits, exploiting the connection (established by Williams) between satisfiability algorithms and lower bounds. Our second motivation is to explore the connection between the expressive power of the circuits and the complexity of the corresponding circuit satisfiability problem

    Parameterized Algorithmics for Computational Social Choice: Nine Research Challenges

    Full text link
    Computational Social Choice is an interdisciplinary research area involving Economics, Political Science, and Social Science on the one side, and Mathematics and Computer Science (including Artificial Intelligence and Multiagent Systems) on the other side. Typical computational problems studied in this field include the vulnerability of voting procedures against attacks, or preference aggregation in multi-agent systems. Parameterized Algorithmics is a subfield of Theoretical Computer Science seeking to exploit meaningful problem-specific parameters in order to identify tractable special cases of in general computationally hard problems. In this paper, we propose nine of our favorite research challenges concerning the parameterized complexity of problems appearing in this context

    Root finding with threshold circuits

    Get PDF
    We show that for any constant d, complex roots of degree d univariate rational (or Gaussian rational) polynomials---given by a list of coefficients in binary---can be computed to a given accuracy by a uniform TC^0 algorithm (a uniform family of constant-depth polynomial-size threshold circuits). The basic idea is to compute the inverse function of the polynomial by a power series. We also discuss an application to the theory VTC^0 of bounded arithmetic.Comment: 19 pages, 1 figur

    Neural computation of arithmetic functions

    Get PDF
    A neuron is modeled as a linear threshold gate, and the network architecture considered is the layered feedforward network. It is shown how common arithmetic functions such as multiplication and sorting can be efficiently computed in a shallow neural network. Some known results are improved by showing that the product of two n-bit numbers and sorting of n n-bit numbers can be computed by a polynomial-size neural network using only four and five unit delays, respectively. Moreover, the weights of each threshold element in the neural networks require O(log n)-bit (instead of n -bit) accuracy. These results can be extended to more complicated functions such as multiple products, division, rational functions, and approximation of analytic functions

    Evaluating Matrix Circuits

    Full text link
    The circuit evaluation problem (also known as the compressed word problem) for finitely generated linear groups is studied. The best upper bound for this problem is coRP\mathsf{coRP}, which is shown by a reduction to polynomial identity testing. Conversely, the compressed word problem for the linear group SL3(Z)\mathsf{SL}_3(\mathbb{Z}) is equivalent to polynomial identity testing. In the paper, it is shown that the compressed word problem for every finitely generated nilpotent group is in DET⊆NC2\mathsf{DET} \subseteq \mathsf{NC}^2. Within the larger class of polycyclic groups we find examples where the compressed word problem is at least as hard as polynomial identity testing for skew arithmetic circuits

    Accurate and Efficient Expression Evaluation and Linear Algebra

    Full text link
    We survey and unify recent results on the existence of accurate algorithms for evaluating multivariate polynomials, and more generally for accurate numerical linear algebra with structured matrices. By "accurate" we mean that the computed answer has relative error less than 1, i.e., has some correct leading digits. We also address efficiency, by which we mean algorithms that run in polynomial time in the size of the input. Our results will depend strongly on the model of arithmetic: Most of our results will use the so-called Traditional Model (TM). We give a set of necessary and sufficient conditions to decide whether a high accuracy algorithm exists in the TM, and describe progress toward a decision procedure that will take any problem and provide either a high accuracy algorithm or a proof that none exists. When no accurate algorithm exists in the TM, it is natural to extend the set of available accurate operations by a library of additional operations, such as x+y+zx+y+z, dot products, or indeed any enumerable set which could then be used to build further accurate algorithms. We show how our accurate algorithms and decision procedure for finding them extend to this case. Finally, we address other models of arithmetic, and the relationship between (im)possibility in the TM and (in)efficient algorithms operating on numbers represented as bit strings.Comment: 49 pages, 6 figures, 1 tabl
    • …
    corecore