8,647 research outputs found

    Development of symbolic algorithms for certain algebraic processes

    Get PDF
    This study investigates the problem of computing the exact greatest common divisor of two polynomials relative to an orthogonal basis, defined over the rational number field. The main objective of the study is to design and implement an effective and efficient symbolic algorithm for the general class of dense polynomials, given the rational number defining terms of their basis. From a general algorithm using the comrade matrix approach, the nonmodular and modular techniques are prescribed. If the coefficients of the generalized polynomials are multiprecision integers, multiprecision arithmetic will be required in the construction of the comrade matrix and the corresponding systems coefficient matrix. In addition, the application of the nonmodular elimination technique on this coefficient matrix extensively applies multiprecision rational number operations. The modular technique is employed to minimize the complexity involved in such computations. A divisor test algorithm that enables the detection of an unlucky reduction is a crucial device for an effective implementation of the modular technique. With the bound of the true solution not known a priori, the test is devised and carefully incorporated into the modular algorithm. The results illustrate that the modular algorithm illustrate its best performance for the class of relatively prime polynomials. The empirical computing time results show that the modular algorithm is markedly superior to the nonmodular algorithms in the case of sufficiently dense Legendre basis polynomials with a small GCD solution. In the case of dense Legendre basis polynomials with a big GCD solution, the modular algorithm is significantly superior to the nonmodular algorithms in higher degree polynomials. For more definitive conclusions, the computing time functions of the algorithms that are presented in this report have been worked out. Further investigations have also been suggested

    Evaluating geometric queries using few arithmetic operations

    Full text link
    Let \cp:=(P_1,...,P_s) be a given family of nn-variate polynomials with integer coefficients and suppose that the degrees and logarithmic heights of these polynomials are bounded by dd and hh, respectively. Suppose furthermore that for each 1is1\leq i\leq s the polynomial PiP_i can be evaluated using LL arithmetic operations (additions, subtractions, multiplications and the constants 0 and 1). Assume that the family \cp is in a suitable sense \emph{generic}. We construct a database D\cal D, supported by an algebraic computation tree, such that for each x[0,1]nx\in [0,1]^n the query for the signs of P1(x),...,Ps(x)P_1(x),...,P_s(x) can be answered using h d^{\cO(n^2)} comparisons and nLnL arithmetic operations between real numbers. The arithmetic-geometric tools developed for the construction of D\cal D are then employed to exhibit example classes of systems of nn polynomial equations in nn unknowns whose consistency may be checked using only few arithmetic operations, admitting however an exponential number of comparisons

    Note on Integer Factoring Methods IV

    Get PDF
    This note continues the theoretical development of deterministic integer factorization algorithms based on systems of polynomials equations. The main result establishes a new deterministic time complexity bench mark in integer factorization.Comment: 20 Pages, New Versio

    Algorithms in algebraic number theory

    Get PDF
    In this paper we discuss the basic problems of algorithmic algebraic number theory. The emphasis is on aspects that are of interest from a purely mathematical point of view, and practical issues are largely disregarded. We describe what has been done and, more importantly, what remains to be done in the area. We hope to show that the study of algorithms not only increases our understanding of algebraic number fields but also stimulates our curiosity about them. The discussion is concentrated of three topics: the determination of Galois groups, the determination of the ring of integers of an algebraic number field, and the computation of the group of units and the class group of that ring of integers.Comment: 34 page
    corecore