261,232 research outputs found

    Transient receptor potential canonical type 3 channels control the vascular contractility of mouse mesenteric arteries

    Get PDF
    Transient receptor potential canonical type 3 (TRPC3) channels are non-selective cation channels and regulate intracellular Ca2+ concentration. We examined the role of TRPC3 channels in agonist-, membrane depolarization (high K+)-, and mechanical (pressure)-induced vasoconstriction and vasorelaxation in mouse mesenteric arteries. Vasoconstriction and vasorelaxation of endothelial cells intact mesenteric arteries were measured in TRPC3 wild-type (WT) and knockout (KO) mice. Calcium concentration ([Ca2+]) was measured in isolated arteries from TRPC3 WT and KO mice as well as in the mouse endothelial cell line bEnd.3. Nitric oxide (NO) production and nitrate/nitrite concentrations were also measured in TRPC3 WT and KO mice. Phenylephrine-induced vasoconstriction was reduced in TRPC3 KO mice when compared to that of WT mice, but neither high K+- nor pressure-induced vasoconstriction was altered in TRPC3 KO mice. Acetylcholine-induced vasorelaxation was inhibited in TRPC3 KO mice and by the selective TRPC3 blocker pyrazole-3. Acetylcholine blocked the phenylephrine-induced increase in Ca2+ ratio and then relaxation in TRPC3 WT mice but had little effect on those outcomes in KO mice. Acetylcholine evoked a Ca2+ increase in endothelial cells, which was inhibited by pyrazole-3. Acetylcholine induced increased NO release in TRPC3 WT mice, but not in KO mice. Acetylcholine also increased the nitrate/nitrite concentration in TRPC3 WT mice, but not in KO mice. The present study directly demonstrated that the TRPC3 channel is involved in agonist-induced vasoconstriction and plays important role in NO-mediated vasorelaxation of intact mesenteric arteries.Fil: Yeon, Soo-In. Yonsei University College of Medicine; Corea del SurFil: Kim, Joo Young. Yonsei University College Of Medicine; . Yonsei University College of Medicine; Corea del SurFil: Yeon, Dong-Soo. Kwandong University College of Medicine; Corea del SurFil: Abramowitz, Joel. National Institute of Environmental Health Sciences; Estados UnidosFil: Birnbaumer, Lutz. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. National Institute of Environmental Health Sciences; Estados UnidosFil: Muallem, Shmuel. National Institutes of Health; Estados UnidosFil: Lee, Young-Ho. Yonsei University College of Medicine; Corea del Su

    Coupling of Smoothened to inhibitory G proteins reduces voltage-gated K

    Get PDF
    SMO (Smoothened), the central transducer of Hedgehog signaling, is coupled to heterotrimeric Gi proteins in many cell types, including cardiomyocytes. In this study, we report that activation of SMO with SHH (Sonic Hedgehog) or a small agonist, purmorphamine, rapidly causes a prolongation of the action potential duration that is sensitive to a SMO inhibitor. In contrast, neither of the SMO agonists prolonged the action potential in cardiomyocytes from transgenic GiCT/TTA mice, in which Gi signaling is impaired, suggesting that the effect of SMO is mediated by Gi proteins. Investigation of the mechanism underlying the change in action potential kinetics revealed that activation of SMO selectively reduces outward voltage-gated K+ repolarizing (Kv) currents in isolated cardiomyocytes and that it induces a down-regulation of membrane levels of Kv4.3 in cardiomyocytes and intact hearts from WT but not from GiCT/TTA mice. Moreover, perfusion of intact hearts with Shh or purmorphamine increased the ventricular repolarization time (QT interval) and induced ventricular arrhythmias. Our data constitute the first report that acute, noncanonical Hh signaling mediated by Gi proteins regulates K+ currents density in cardiomyocytes and sensitizes the heart to the development of ventricular arrhythmias. © 2018 Cheng et al

    Synapse elimination and learning rules co-regulated by MHC class I H2-Db.

    Get PDF
    The formation of precise connections between retina and lateral geniculate nucleus (LGN) involves the activity-dependent elimination of some synapses, with strengthening and retention of others. Here we show that the major histocompatibility complex (MHC) class I molecule H2-D(b) is necessary and sufficient for synapse elimination in the retinogeniculate system. In mice lacking both H2-K(b) and H2-D(b) (K(b)D(b)(-/-)), despite intact retinal activity and basal synaptic transmission, the developmentally regulated decrease in functional convergence of retinal ganglion cell synaptic inputs to LGN neurons fails and eye-specific layers do not form. Neuronal expression of just H2-D(b) in K(b)D(b)(-/-) mice rescues both synapse elimination and eye-specific segregation despite a compromised immune system. When patterns of stimulation mimicking endogenous retinal waves are used to probe synaptic learning rules at retinogeniculate synapses, long-term potentiation (LTP) is intact but long-term depression (LTD) is impaired in K(b)D(b)(-/-) mice. This change is due to an increase in Ca(2+)-permeable AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors. Restoring H2-D(b) to K(b)D(b)(-/-) neurons renders AMPA receptors Ca(2+) impermeable and rescues LTD. These observations reveal an MHC-class-I-mediated link between developmental synapse pruning and balanced synaptic learning rules enabling both LTD and LTP, and demonstrate a direct requirement for H2-D(b) in functional and structural synapse pruning in CNS neurons

    Interaction of Gα₁₂ with Gα₁₃ and Gα_q signaling pathways

    Get PDF
    The G(12) subfamily of heterotrimeric G-proteins consists of two members, G(12) and G(13). Gene-targeting studies have revealed a role for G(13) in blood vessel development. Mice lacking the a subunit of G(13) die around embryonic day 10 as the result of an angiogenic defect. On the other hand, the physiological role of G(12) is still unclear. To address this issue, we generated Galpha(12)-deficient mice. In contrast to the Galpha(13)-deficient mice, Galpha(12)-deficient mice are viable, fertile, and do not show apparent abnormalities. However, Galpha(12) does not seem to be entirely redundant, because in the offspring generated from Galpha(12)+/-Galpha(13) intercrosses, at least one intact Galpha(12) allele is required for the survival of animals with only one Galpha(13) allele. In addition, Galpha(12) and Galpha(13) showed a difference in mediating cell migratory response to lysophosphatidic acid in embryonic fibroblast cells. Furthermore, mice lacking both Galpha(12) and Galpha(q) die in utero at about embryonic day 13. These data indicate that the Galpha(12)-mediated signaling pathway functionally interacts not only with the Galpha(13)- but also with the Galpha(q/11)-mediated signaling systems

    Apoptosis in mouse fetal and neonatal oocytes during meiotic prophase one

    Get PDF
    Background The vast majority of oocytes formed in the fetal ovary do not survive beyond birth. Possible reasons for their loss include the elimination of non-viable genetic constitutions arising through meiosis, however, the precise relationship between meiotic stages and prenatal apoptosis of oocytes remains elusive. We studied oocytes in mouse fetal and neonatal ovaries, 14.5–21 days post coitum, to examine the relationship between oocyte development and programmed cell death during meiotic prophase I. Results Microspreads of fetal and neonatal ovarian cells underwent immunocytochemistry for meiosis- and apoptosis-related markers. COR-1 (meiosis-specific) highlighted axial elements of the synaptonemal complex and allowed definitive identification of the stages of meiotic prophase I. Labelling for cleaved poly-(ADP-ribose) polymerase (PARP-1), an inactivated DNA repair protein, indicated apoptosis. The same oocytes were then labelled for DNA double strand breaks (DSBs) using TUNEL. 1960 oocytes produced analysable results. . Oocytes at all stages of meiotic prophase I stained for cleaved PARP-1 and/or TUNEL, or neither. Oocytes with fragmented (19.8%) or compressed (21.2%) axial elements showed slight but significant differences in staining for cleaved PARP-1 and TUNEL to those with intact elements. However, fragmentation of axial elements alone was not a good indicator of cell demise. Cleaved PARP-1 and TUNEL staining were not necessarily coincident, showing that TUNEL is not a reliable marker of apoptosis in oocytes. Conclusions Our data indicate that apoptosis can occur throughout meiotic prophase I in mouse fetal and early postnatal oocytes, with greatest incidence at the diplotene stage. Careful selection of appropriate markers for oocyte apoptosis is essential

    Loss of maternal annexin A5 increases the likelihood of placental platelet thrombosis and foetal loss

    Get PDF
    Antiphospholipid syndrome is associated with an increased risk of thrombosis and pregnancy loss. Annexin A5 (Anxa5) is a candidate autoantigen. It is not known, however, whether endogenous Anxa5 prevents foetal loss during normal pregnancy. We found significant reductions in litter size and foetal weight in Anxa5-null mice (Anxa5-KO). These changes occurred even when only the mother was Anxa5-KO. A small amount of placental fibrin deposition was observed in the decidual tissues, but did not noticeably differ between wild-type and Anxa5-KO mice. However, immunoreactivity for integrin beta 3/CD61, a platelet marker, was demonstrated within thrombi in the arterial canals only in Anxa5-KO mothers. Subcutaneous administration of the anticoagulant heparin to pregnant Anxa5-KO mice significantly reduced pregnancy loss, suggesting that maternal Anxa5 is crucial for maintaining intact placental circulation. Hence, the presence of maternal Anxa5 minimises the risk of thrombosis in the placental circulation and reduces the risk of foetal loss

    Images in cardiovascular medicine : multiphoton microscopy for three-dimensional imaging of lymphocyte recruitment into apolipoprotein-E-deficient mouse carotid artery

    Get PDF
    Two recent elegant studies have shown that in apolipoprotein-E– deficient mice, the lamina adventitia is a major site of arterial wall inflammation associated with lymphocyte infiltration into atherosclerotic arteries and with formation of adventitial lymphoid-like tissues.1,2 These results suggest that lymphocyte responses in the lamina adventitia may play a crucial role in atherosclerosis development.1,

    Gene therapy targeting SARM1 blocks pathological axon degeneration in mice

    Get PDF
    Axonal degeneration (AxD) following nerve injury, chemotherapy, and in several neurological disorders is an active process driven by SARM1, an injury-activated NADase. Axons of SARM1-null mice exhibit greatly delayed AxD after transection and in models of neurological disease, suggesting that inhibiting SARM1 is a promising strategy to reduce pathological AxD. Unfortunately, no drugs exist to target SARM1. We, therefore, developed SARM1 dominant-negatives that potently block AxD in cellular models of axotomy and neuropathy. To assess efficacy in vivo, we used adeno-associated virus-mediated expression of the most potent SARM1 dominant-negative and nerve transection as a model of severe AxD. While axons of vehicle-treated mice degenerate rapidly, axons of mice expressing SARM1 dominant-negative can remain intact for \u3e10 d after transection, similar to the protection observed in SARM1-null mice. We thus developed a novel in vivo gene therapeutic to block pathological axon degeneration by inhibiting SARM1, an approach that may be applied clinically to treat manifold neurodegenerative diseases characterized by axon loss
    corecore