1,480 research outputs found

    Robust Dense Mapping for Large-Scale Dynamic Environments

    Full text link
    We present a stereo-based dense mapping algorithm for large-scale dynamic urban environments. In contrast to other existing methods, we simultaneously reconstruct the static background, the moving objects, and the potentially moving but currently stationary objects separately, which is desirable for high-level mobile robotic tasks such as path planning in crowded environments. We use both instance-aware semantic segmentation and sparse scene flow to classify objects as either background, moving, or potentially moving, thereby ensuring that the system is able to model objects with the potential to transition from static to dynamic, such as parked cars. Given camera poses estimated from visual odometry, both the background and the (potentially) moving objects are reconstructed separately by fusing the depth maps computed from the stereo input. In addition to visual odometry, sparse scene flow is also used to estimate the 3D motions of the detected moving objects, in order to reconstruct them accurately. A map pruning technique is further developed to improve reconstruction accuracy and reduce memory consumption, leading to increased scalability. We evaluate our system thoroughly on the well-known KITTI dataset. Our system is capable of running on a PC at approximately 2.5Hz, with the primary bottleneck being the instance-aware semantic segmentation, which is a limitation we hope to address in future work. The source code is available from the project website (http://andreibarsan.github.io/dynslam).Comment: Presented at IEEE International Conference on Robotics and Automation (ICRA), 201

    Holistic, Instance-Level Human Parsing

    Full text link
    Object parsing -- the task of decomposing an object into its semantic parts -- has traditionally been formulated as a category-level segmentation problem. Consequently, when there are multiple objects in an image, current methods cannot count the number of objects in the scene, nor can they determine which part belongs to which object. We address this problem by segmenting the parts of objects at an instance-level, such that each pixel in the image is assigned a part label, as well as the identity of the object it belongs to. Moreover, we show how this approach benefits us in obtaining segmentations at coarser granularities as well. Our proposed network is trained end-to-end given detections, and begins with a category-level segmentation module. Thereafter, a differentiable Conditional Random Field, defined over a variable number of instances for every input image, reasons about the identity of each part by associating it with a human detection. In contrast to other approaches, our method can handle the varying number of people in each image and our holistic network produces state-of-the-art results in instance-level part and human segmentation, together with competitive results in category-level part segmentation, all achieved by a single forward-pass through our neural network.Comment: Poster at BMVC 201

    BiSeg: Simultaneous Instance Segmentation and Semantic Segmentation with Fully Convolutional Networks

    Full text link
    We present a simple and effective framework for simultaneous semantic segmentation and instance segmentation with Fully Convolutional Networks (FCNs). The method, called BiSeg, predicts instance segmentation as a posterior in Bayesian inference, where semantic segmentation is used as a prior. We extend the idea of position-sensitive score maps used in recent methods to a fusion of multiple score maps at different scales and partition modes, and adopt it as a robust likelihood for instance segmentation inference. As both Bayesian inference and map fusion are performed per pixel, BiSeg is a fully convolutional end-to-end solution that inherits all the advantages of FCNs. We demonstrate state-of-the-art instance segmentation accuracy on PASCAL VOC.Comment: BMVC201

    Fused Text Segmentation Networks for Multi-oriented Scene Text Detection

    Full text link
    In this paper, we introduce a novel end-end framework for multi-oriented scene text detection from an instance-aware semantic segmentation perspective. We present Fused Text Segmentation Networks, which combine multi-level features during the feature extracting as text instance may rely on finer feature expression compared to general objects. It detects and segments the text instance jointly and simultaneously, leveraging merits from both semantic segmentation task and region proposal based object detection task. Not involving any extra pipelines, our approach surpasses the current state of the art on multi-oriented scene text detection benchmarks: ICDAR2015 Incidental Scene Text and MSRA-TD500 reaching Hmean 84.1% and 82.0% respectively. Morever, we report a baseline on total-text containing curved text which suggests effectiveness of the proposed approach.Comment: Accepted by ICPR201
    • …
    corecore