14,554 research outputs found

    Computer-Assisted Program Reasoning Based on a Relational Semantics of Programs

    Full text link
    We present an approach to program reasoning which inserts between a program and its verification conditions an additional layer, the denotation of the program expressed in a declarative form. The program is first translated into its denotation from which subsequently the verification conditions are generated. However, even before (and independently of) any verification attempt, one may investigate the denotation itself to get insight into the "semantic essence" of the program, in particular to see whether the denotation indeed gives reason to believe that the program has the expected behavior. Errors in the program and in the meta-information may thus be detected and fixed prior to actually performing the formal verification. More concretely, following the relational approach to program semantics, we model the effect of a program as a binary relation on program states. A formal calculus is devised to derive from a program a logic formula that describes this relation and is subject for inspection and manipulation. We have implemented this idea in a comprehensive form in the RISC ProgramExplorer, a new program reasoning environment for educational purposes which encompasses the previously developed RISC ProofNavigator as an interactive proving assistant.Comment: In Proceedings THedu'11, arXiv:1202.453

    Engineering Crowdsourced Stream Processing Systems

    Full text link
    A crowdsourced stream processing system (CSP) is a system that incorporates crowdsourced tasks in the processing of a data stream. This can be seen as enabling crowdsourcing work to be applied on a sample of large-scale data at high speed, or equivalently, enabling stream processing to employ human intelligence. It also leads to a substantial expansion of the capabilities of data processing systems. Engineering a CSP system requires the combination of human and machine computation elements. From a general systems theory perspective, this means taking into account inherited as well as emerging properties from both these elements. In this paper, we position CSP systems within a broader taxonomy, outline a series of design principles and evaluation metrics, present an extensible framework for their design, and describe several design patterns. We showcase the capabilities of CSP systems by performing a case study that applies our proposed framework to the design and analysis of a real system (AIDR) that classifies social media messages during time-critical crisis events. Results show that compared to a pure stream processing system, AIDR can achieve a higher data classification accuracy, while compared to a pure crowdsourcing solution, the system makes better use of human workers by requiring much less manual work effort

    A context-based navigation paradigm for accessing web data.

    Get PDF
    This paper presents a context-based navigation paradigm, so as to overcome the phenomenon of user disorientation in a Web environment. Conventional navigation along static links is complemented by run-time generated guided tours, which are derived dynamically from the context of a user's information requirements. The result is a two-dimensional navigation paradigm, which reconciles complete navigational freedom and flexibility with a measure of linear guidance. Consequently, orientation is improved through reduced cognitive overhead and an increased sense of document coherence.Information; Requirements; Cognitive;

    Conceptual design of sound, custom composition languages

    Get PDF
    Service composition, web mashups, and business process modeling are based on the composition and reuse of existing functionalities, user interfaces, or tasks. Composition tools typically come with their own, purposely built composition languages, based on composition techniques like data flow or control flow, and only with minor distinguishing features-besides the different syntax. Yet, all these composition languages are developed from scratch, without reference specifications (e.g., XML schemas), and by reasoning in terms of low-level language constructs. That is, there is neither reuse nor design support in the development of custom composition languages. We propose a conceptual design technique for the construction of custom composition languages that is based on a generic composition reference model and that fosters reuse. The approach is based on the abstraction of common composition techniques into high-level language features, a set of reference specifications for each feature, and the assembling of features into custom languages by guaranteeing their soundness. We specifically focus on mashup languages

    Bridging the Gap Between Product Lines and Systems Engineering: An experience in Variability Management for Automotive Model-based Systems Engineering

    No full text
    International audienceWe present in this paper an experience in modeling a family of parking brake systems, with shared assets and alternative solutions, and relate them to the needs of Renault in terms of variability management. The models are realized using a set of customized tools for model based systems engineering and variability management, based on SysML models. The purpose is to present an industrial context that requires the adoption of a product line approach and of variability modeling techniques, outside of a pure-software domain. At Renault, the interest is in identifying variations and reuse opportunities early in the product development cycle, as well as in preparing vehicle con figuration specifications during the systems engineering process. This would lead to lowering the engineering effort and to higher quality and confidence in carry-over and carry across based solutions. We advocate for a tight integration of variability management with the model based systems engineering approach, which needs to address methodological support, modeling techniques and efficient tools for interactive con figuration, adapted for engineering activities

    A Role-Based Approach for Orchestrating Emergent Configurations in the Internet of Things

    Full text link
    The Internet of Things (IoT) is envisioned as a global network of connected things enabling ubiquitous machine-to-machine (M2M) communication. With estimations of billions of sensors and devices to be connected in the coming years, the IoT has been advocated as having a great potential to impact the way we live, but also how we work. However, the connectivity aspect in itself only accounts for the underlying M2M infrastructure. In order to properly support engineering IoT systems and applications, it is key to orchestrate heterogeneous 'things' in a seamless, adaptive and dynamic manner, such that the system can exhibit a goal-directed behaviour and take appropriate actions. Yet, this form of interaction between things needs to take a user-centric approach and by no means elude the users' requirements. To this end, contextualisation is an important feature of the system, allowing it to infer user activities and prompt the user with relevant information and interactions even in the absence of intentional commands. In this work we propose a role-based model for emergent configurations of connected systems as a means to model, manage, and reason about IoT systems including the user's interaction with them. We put a special focus on integrating the user perspective in order to guide the emergent configurations such that systems goals are aligned with the users' intentions. We discuss related scientific and technical challenges and provide several uses cases outlining the concept of emergent configurations.Comment: In Proceedings of the Second International Workshop on the Internet of Agents @AAMAS201
    • …
    corecore