1,679,093 research outputs found

    Quantum Ergoregion Instability

    Get PDF
    We have shown that, as in the case of black holes, an ergosphere itself with no event horizon inside can evaporate spontaneously, giving energy radiation to spatial infinity until the ergoregion disappears. However, the feature of his quantum ergoregion instability is very much different from black hole radiation. It is rather analogous to a laser amplification. This analysis is based on the canonical quantization of a neutral scalar field in the presence of unstable modes characterized by complex frequencies in a simple model for a rapidly rotating star.Comment: 10 pages, latex, one epsfig, to appear in the Proceedings of the APCTP Winter School on Duality of String Theory, Korea, Feb. 17-28, 1997; a brief version of gr-qc/9701040 with slightly different presentatio

    Subexponential instability implies infinite invariant measure

    Full text link
    We study subexponential instability to characterize a dynamical instability of weak chaos. We show that a dynamical system with subexponential instability has an infinite invariant measure, and then we present the generalized Lyapunov exponent to characterize subexponential instability.Comment: 7 pages, 5 figure

    Screw instability of the magnetic field connecting a rotating black hole with its surrounding disk

    Full text link
    Screw instability of the magnetic field connecting a rotating black hole (BH) with its surrounding disk is discussed based on the model of the coexistence of the Blandford-Znajek (BZ) process and the magnetic coupling (MC) process (CEBZMC). A criterion for the screw instability with the state of CEBZMC is derived based on the calculations of the poloidal and toroidal components of the magnetic field on the disk. It is shown by the criterion that the screw instability will occur, if the BH spin and the power-law index for the variation of the magnetic field on the disk are greater than some critical values. It turns out that the instability occurs outside some critical radii on the disk. It is argued that the state of CEBZMC always accompanies the screw instability. In addtition, we show that the screw instability contributes only a small fraction of magnetic extraction of energy from a rotating BH.Comment: 18 pages, 13 figures; Accepted by Ap

    Energy dynamics in a simulation of LAPD turbulence

    Get PDF
    Energy dynamics calculations in a 3D fluid simulation of drift wave turbulence in the linear Large Plasma Device (LAPD) [W. Gekelman et al., Rev. Sci. Inst. 62, 2875 (1991)] illuminate processes that drive and dissipate the turbulence. These calculations reveal that a nonlinear instability dominates the injection of energy into the turbulence by overtaking the linear drift wave instability that dominates when fluctuations about the equilibrium are small. The nonlinear instability drives flute-like (k=0k_\parallel = 0) density fluctuations using free energy from the background density gradient. Through nonlinear axial wavenumber transfer to k0k_\parallel \ne 0 fluctuations, the nonlinear instability accesses the adiabatic response, which provides the requisite energy transfer channel from density to potential fluctuations as well as the phase shift that causes instability. The turbulence characteristics in the simulations agree remarkably well with experiment. When the nonlinear instability is artificially removed from the system through suppressing k=0k_\parallel=0 modes, the turbulence develops a coherent frequency spectrum which is inconsistent with experimental data

    The subcritical baroclinic instability in local accretion disc models

    Full text link
    (abridged) Aims: We present new results exhibiting a subcritical baroclinic instability (SBI) in local shearing box models. We describe the 2D and 3D behaviour of this instability using numerical simulations and we present a simple analytical model describing the underlying physical process. Results: A subcritical baroclinic instability is observed in flows stable for the Solberg-Hoiland criterion using local simulations. This instability is found to be a nonlinear (or subcritical) instability, which cannot be described by ordinary linear approaches. It requires a radial entropy gradient weakly unstable for the Schwartzchild criterion and a strong thermal diffusivity (or equivalently a short cooling time). In compressible simulations, the instability produces density waves which transport angular momentum outward with typically alpha<3e-3, the exact value depending on the background temperature profile. Finally, the instability survives in 3D, vortex cores becoming turbulent due to parametric instabilities. Conclusions: The subcritical baroclinic instability is a robust phenomenon, which can be captured using local simulations. The instability survives in 3D thanks to a balance between the 2D SBI and 3D parametric instabilities. Finally, this instability can lead to a weak outward transport of angular momentum, due to the generation of density waves by the vortices.Comment: 12 pages, 17 figures, Accepted in A&
    corecore