3 research outputs found

    Composing quadrilateral meshes for animation

    Get PDF
    The modeling-by-composition paradigm can be a powerful tool in modern animation pipelines. We propose two novel interactive techniques to compose 3D assets that enable the artists to freely remove, detach and combine components of organic models. The idea behind our methods is to preserve most of the original information in the input characters and blend accordingly where necessary. The first method, QuadMixer, provides a robust tool to compose the quad layouts of watertight pure quadrilateral meshes, exploiting the boolean operations defined on triangles. Quad Layout is a crucial property for many applications since it conveys important information that would otherwise be destroyed by techniques that aim only at preserving the shape. Our technique keeps untouched all the quads in the patches which are not involved in the blending. The resulting meshes preserve the originally designed edge flows that, by construction, are captured and incorporated into the new quads. SkinMixer extends this approach to compose skinned models, taking into account not only the surface but also the data structures for animating the character. We propose a new operation-based technique that preserves and smoothly merges meshes, skeletons, and skinning weights. The retopology approach of QuadMixer is extended to work on quad-dominant and arbitrary complex surfaces. Instead of relying on boolean operations on triangle meshes, we manipulate signed distance fields to generate an implicit surface. The results preserve most of the information in the input assets, blending accordingly in the intersection regions. The resulting characters are ready to be used in animation pipelines. Given the high quality of the results generated, we believe that our methods could have a huge impact on the entertainment industry. Integrated into current software for 3D modeling, they would certainly provide a powerful tool for the artists. Allowing them to automatically reuse parts of their well-designed characters could lead to a new approach for creating models, which would significantly reduce the cost of the process

    Numerical and Geometric Optimizations for Surface and Tolerance Modeling

    Get PDF
    Optimization techniques are widely used in many research and engineering areas. This dissertation presents numerical and geometric optimization methods for solving geometric and solid modeling problems. Geometric optimization methods are designed for manufacturing process planning, which optimizes the process by changing dependency relationships among geometric primitives from the original design diagram. Geometric primitives are used to represent part features, and dependencies in the dimensions between parts are represented by a topological graph. The ordering of these dependencies can have a significant effect on the tolerance zones in the part. To obtain tolerance zones from the dependencies, the conventional parametric method of tolerance analysis is de-composed into a set of geometric computations, which are combined and cascaded to obtain the tolerance zones in the geometric representations. Geometric optimization is applied to the topological graph in order to find a solution that provides not only an optimal dimensioning scheme but also an optimal plan for manufacturing the physical part. The applications of our method include tolerance analysis, dimension scheme optimization, and process planning. Two numerical optimization methods are proposed for local and global surface parameterizations. One is the nonlinear optimization, which is used for building the local field-aware parameterization. Given a local chart of the surface, a two-phase method is proposed, which generates a folding-free parameterization while still being aware of the geodesic metric. The parameterization method is applied in a view-dependent 3D painting system, which constitutes a local, adaptive and interactive painting environment. The other is the mixed-integer quadratic optimization, which is used for generating a quad mesh from a given triangular mesh. With a given cross field, the computation of parametric coordinates is formulated to be a mixed-integer optimization problem, which parameterizes the surface with good quality by adding redundant integer variables. The mixed integer system is solved more efficiently by an improved adaptive rounding solver. To obtain the final quadrangular mesh, an isoline tracing method and a breadth-first traversal mesh generation method are proposed so that the final mesh result has face information, which is useful for further model processing
    corecore