1,330 research outputs found

    Motivational Social Visualizations for Personalized E-Learning

    Get PDF
    A large number of educational resources is now available on the Web to support both regular classroom learning and online learning. However, the abundance of available content produces at least two problems: how to help students find the most appropriate resources, and how to engage them into using these resources and benefiting from them. Personalized and social learning have been suggested as potential methods for addressing these problems. Our work presented in this paper attempts to combine the ideas of personalized and social learning. We introduce Progressor + , an innovative Web-based interface that helps students find the most relevant resources in a large collection of self-assessment questions and programming examples. We also present the results of a classroom study of the Progressor +  in an undergraduate class. The data revealed the motivational impact of the personalized social guidance provided by the system in the target context. The interface encouraged students to explore more educational resources and motivated them to do some work ahead of the course schedule. The increase in diversity of explored content resulted in improving students’ problem solving success. A deeper analysis of the social guidance mechanism revealed that it is based on the leading behavior of the strong students, who discovered the most relevant resources and created trails for weaker students to follow. The study results also demonstrate that students were more engaged with the system: they spent more time in working with self-assessment questions and annotated examples, attempted more questions, and achieved higher success rates in answering them

    Progressor: Social navigation support through open social student modeling

    Get PDF
    The increased volumes of online learning content have produced two problems: how to help students to find the most appropriate resources and how to engage them in using these resources. Personalized and social learning have been suggested as potential ways to address these problems. Our work presented in this paper combines the ideas of personalized and social learning in the context of educational hypermedia. We introduce Progressor, an innovative Web-based tool based on the concepts of social navigation and open student modeling that helps students to find the most relevant resources in a large collection of parameterized self-assessment questions on Java programming. We have evaluated Progressor in a semester-long classroom study, the results of which are presented in this paper. The study confirmed the impact of personalized social navigation support provided by the system in the target context. The interface encouraged students to explore more topics attempting more questions and achieving higher success rates in answering them. A deeper analysis of the social navigation support mechanism revealed that the top students successfully led the way to discovering most relevant resources by creating clear pathways for weaker students. © 2013 Taylor and Francis Group, LLC

    The impact of social performance visualization on students

    Get PDF
    Over the last 10 years two major research directions explored the benefits of visualizing student learning progress. One stream of research on learning performance visualization attempts to build a visual presentation of students' learning progress, targeting the needs of instructors and academic advisors. The other stream of research on Open Student Modeling (OSM) attempts to visualize the state of individual student's knowledge and present the visualization directly to the student. The results of the studies in that area show that, presenting students with basic representation of their knowledge will result in facilitating their metacognitive activities and promoting self-reflection and awareness. This paper tries to study the impact of a more sophisticated form of performance visualization on students. We believe that our visualization tool can positively influence students by granting them the opportunity to get a view of their performance in the content of the class progress. Moreover, we tried to boost their motivation by building a positive sense of competition using a representation of average class performance. In this paper we present study comparing two groups of students, one using the visualization and another without visualization. The results of the study shows that: 1) the students are likely to use the social visualization tool during the whole semester to monitor their progress in comparison with their peers; 2) the visualization tool encourages students to use the learning materials in a more continuous manner during the whole semester and 3) students will achieve a higher success rate in answering self-assessment quizzes. © 2012 IEEE

    Sequence Modelling For Analysing Student Interaction with Educational Systems

    Full text link
    The analysis of log data generated by online educational systems is an important task for improving the systems, and furthering our knowledge of how students learn. This paper uses previously unseen log data from Edulab, the largest provider of digital learning for mathematics in Denmark, to analyse the sessions of its users, where 1.08 million student sessions are extracted from a subset of their data. We propose to model students as a distribution of different underlying student behaviours, where the sequence of actions from each session belongs to an underlying student behaviour. We model student behaviour as Markov chains, such that a student is modelled as a distribution of Markov chains, which are estimated using a modified k-means clustering algorithm. The resulting Markov chains are readily interpretable, and in a qualitative analysis around 125,000 student sessions are identified as exhibiting unproductive student behaviour. Based on our results this student representation is promising, especially for educational systems offering many different learning usages, and offers an alternative to common approaches like modelling student behaviour as a single Markov chain often done in the literature.Comment: The 10th International Conference on Educational Data Mining 201

    Teaching Categories to Human Learners with Visual Explanations

    Get PDF
    We study the problem of computer-assisted teaching with explanations. Conventional approaches for machine teaching typically only provide feedback at the instance level e.g., the category or label of the instance. However, it is intuitive that clear explanations from a knowledgeable teacher can significantly improve a student's ability to learn a new concept. To address these existing limitations, we propose a teaching framework that provides interpretable explanations as feedback and models how the learner incorporates this additional information. In the case of images, we show that we can automatically generate explanations that highlight the parts of the image that are responsible for the class label. Experiments on human learners illustrate that, on average, participants achieve better test set performance on challenging categorization tasks when taught with our interpretable approach compared to existing methods

    Approximate modelling of the multi-dimensional learner

    Get PDF
    This paper describes the design of the learner modelling component of the LeActiveMath system, which was conceived to integrate modelling of learners' competencies in a subject domain, motivational and affective dispositions and meta-cognition. This goal has been achieved by organising learner models as stacks, with the subject domain as ground layer and competency, motivation, affect and meta-cognition as upper layers. A concept map per layer defines each layer's elements and internal structure, and beliefs are associated to the applications of elements in upper-layers to elements in lower-layers. Beliefs are represented using belief functions and organised in a network constructed as the composition of all layers' concept maps, which is used for propagation of evidence

    EVM: Incorporating Model Checking into Exploratory Visual Analysis

    Full text link
    Visual analytics (VA) tools support data exploration by helping analysts quickly and iteratively generate views of data which reveal interesting patterns. However, these tools seldom enable explicit checks of the resulting interpretations of data -- e.g., whether patterns can be accounted for by a model that implies a particular structure in the relationships between variables. We present EVM, a data exploration tool that enables users to express and check provisional interpretations of data in the form of statistical models. EVM integrates support for visualization-based model checks by rendering distributions of model predictions alongside user-generated views of data. In a user study with data scientists practicing in the private and public sector, we evaluate how model checks influence analysts' thinking during data exploration. Our analysis characterizes how participants use model checks to scrutinize expectations about data generating process and surfaces further opportunities to scaffold model exploration in VA tools
    corecore