122,844 research outputs found

    Neural Networks for Information Retrieval

    Get PDF
    Machine learning plays a role in many aspects of modern IR systems, and deep learning is applied in all of them. The fast pace of modern-day research has given rise to many different approaches for many different IR problems. The amount of information available can be overwhelming both for junior students and for experienced researchers looking for new research topics and directions. Additionally, it is interesting to see what key insights into IR problems the new technologies are able to give us. The aim of this full-day tutorial is to give a clear overview of current tried-and-trusted neural methods in IR and how they benefit IR research. It covers key architectures, as well as the most promising future directions.Comment: Overview of full-day tutorial at SIGIR 201

    ExplainIt! -- A declarative root-cause analysis engine for time series data (extended version)

    Full text link
    We present ExplainIt!, a declarative, unsupervised root-cause analysis engine that uses time series monitoring data from large complex systems such as data centres. ExplainIt! empowers operators to succinctly specify a large number of causal hypotheses to search for causes of interesting events. ExplainIt! then ranks these hypotheses, reducing the number of causal dependencies from hundreds of thousands to a handful for human understanding. We show how a declarative language, such as SQL, can be effective in declaratively enumerating hypotheses that probe the structure of an unknown probabilistic graphical causal model of the underlying system. Our thesis is that databases are in a unique position to enable users to rapidly explore the possible causal mechanisms in data collected from diverse sources. We empirically demonstrate how ExplainIt! had helped us resolve over 30 performance issues in a commercial product since late 2014, of which we discuss a few cases in detail.Comment: SIGMOD Industry Track 201

    Structural Regularities in Text-based Entity Vector Spaces

    Get PDF
    Entity retrieval is the task of finding entities such as people or products in response to a query, based solely on the textual documents they are associated with. Recent semantic entity retrieval algorithms represent queries and experts in finite-dimensional vector spaces, where both are constructed from text sequences. We investigate entity vector spaces and the degree to which they capture structural regularities. Such vector spaces are constructed in an unsupervised manner without explicit information about structural aspects. For concreteness, we address these questions for a specific type of entity: experts in the context of expert finding. We discover how clusterings of experts correspond to committees in organizations, the ability of expert representations to encode the co-author graph, and the degree to which they encode academic rank. We compare latent, continuous representations created using methods based on distributional semantics (LSI), topic models (LDA) and neural networks (word2vec, doc2vec, SERT). Vector spaces created using neural methods, such as doc2vec and SERT, systematically perform better at clustering than LSI, LDA and word2vec. When it comes to encoding entity relations, SERT performs best.Comment: ICTIR2017. Proceedings of the 3rd ACM International Conference on the Theory of Information Retrieval. 201

    Contextualised Browsing in a Digital Library's Living Lab

    Full text link
    Contextualisation has proven to be effective in tailoring \linebreak search results towards the users' information need. While this is true for a basic query search, the usage of contextual session information during exploratory search especially on the level of browsing has so far been underexposed in research. In this paper, we present two approaches that contextualise browsing on the level of structured metadata in a Digital Library (DL), (1) one variant bases on document similarity and (2) one variant utilises implicit session information, such as queries and different document metadata encountered during the session of a users. We evaluate our approaches in a living lab environment using a DL in the social sciences and compare our contextualisation approaches against a non-contextualised approach. For a period of more than three months we analysed 47,444 unique retrieval sessions that contain search activities on the level of browsing. Our results show that a contextualisation of browsing significantly outperforms our baseline in terms of the position of the first clicked item in the result set. The mean rank of the first clicked document (measured as mean first relevant - MFR) was 4.52 using a non-contextualised ranking compared to 3.04 when re-ranking the result lists based on similarity to the previously viewed document. Furthermore, we observed that both contextual approaches show a noticeably higher click-through rate. A contextualisation based on document similarity leads to almost twice as many document views compared to the non-contextualised ranking.Comment: 10 pages, 2 figures, paper accepted at JCDL 201

    Feature and Variable Selection in Classification

    Full text link
    The amount of information in the form of features and variables avail- able to machine learning algorithms is ever increasing. This can lead to classifiers that are prone to overfitting in high dimensions, high di- mensional models do not lend themselves to interpretable results, and the CPU and memory resources necessary to run on high-dimensional datasets severly limit the applications of the approaches. Variable and feature selection aim to remedy this by finding a subset of features that in some way captures the information provided best. In this paper we present the general methodology and highlight some specific approaches.Comment: Part of master seminar in document analysis held by Marcus Eichenberger-Liwick
    • …
    corecore