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Insights into distributed feature ranking

Verónica Bolón-Canedoa,b,∗, Konstantinos Sechidisb, Noelia
Sánchez-Maroñoa, Amparo Alonso-Betanzosa, Gavin Brownb

aDepartment of Computer Science, Universidade da Coruña, 15071 A Coruña, Spain
bSchool of Computer Science, University of Manchester, M139PL Manchester, UK

Abstract

In an era in which the volume and complexity of datasets is continuously
growing, feature selection techniques have become indispensable to extract
useful information from huge amounts of data. However, existing algorithms
may not scale well when dealing with huge datasets, and a possible solution is
to distribute the data in several nodes. In this work we explore the different
ways of distributing the data (by features and by samples) and we evaluate to
what extent it is possible to obtain similar results as those obtained with the
whole dataset. Trying to deal with the challenge of distributing the feature
ranking process, we have performed experiments with different aggregation
methods and feature rankers, and also evaluated the effect of distributing the
feature ranking process in the subsequent classification performance.

Keywords: feature selection, feature ranking, distributed learning

1. Introduction

Feature selection has been one of the high activity research areas during
the last few years, due to the appearance of datasets containing hundreds
of thousands of features. Thus, as feature selection allows to reduce the di-
mensionality of the problems, it can be used for maintaining and –most of
the time– improving the machine learning algorithms’ performance, while re-
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ducing computational costs. For these reasons, feature selection has become
an indispensable preprocessing step in many applications, showing outstand-
ing results, such as in the fields of bioinformatics [38, 30], text analysis and
classification [4, 39, 3], network analysis and classification [16, 43], or dimen-
sionality reduction for the sake of visualization [37], just to name a few.

However, when dealing with an extremely high number of input features,
learning algorithms’ performance can degenerate due to over fitting, learned
models decrease their interpretability as they become more complex and,
finally, speed and efficiency of the algorithms decline in accordance with size
[18]. Moreover, the problem is that the majority of existing feature selection
algorithms were designed under the assumption that the dataset would be
represented as a single memory-resident table. So if the entire data set does
not fit in main memory, these algorithms are challenging to apply.

A practical solution to the aforementioned problems might be to dis-
tribute the dataset into several nodes or processors in a computer cluster.
Then, if the data is distributed, feature selection methods may take advan-
tage of processing multiple subsets in sequence or concurrently. There are
two simple strategies for distributing the data, that can be consulted in Fig-
ure 1. On the one hand, it is possible to partition the data by samples
(known as horizontal distribution), give a subset of samples to each node, in
such a way that each node estimates the score for all the features and sort
them. At the end, the rankings obtained by each node need to be combined.
On the other hand, another possibility is to partition the data by features
(vertically), give a subset of features to each node to estimate their scores,
and then combine the partial rankings.
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Figure 1: Types of partition of the data

In this work we explore the two strategies depicted above. We also exam-
ine the effects of including some overlap in the subsets of data, and analyze
different possibilities for combining the partial results, proposing a corollary
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that can help in deciding how to distribute the data across the available
nodes. Finally, we provide some recommendations about the most appropri-
ate aggregation method to combine the partial rankings and which feature
selection methods are more robust for dealing with incomplete rankings. A
small part of this article has been published in a previous conference paper
[13], in particular some experiments concerning the vertical distribution on
microarray datasets.

2. An illustrative example

The problem of feature ranking can be characterized as the problem of
having a set of features and obtaining an ordered ranking of them according
to some degree of importance, that usually is given by a feature selection
criterion. Although feature ranking may well be one of the better known
preprocessing techniques, extensively studied for years, the present Big Data
scenario has come with new challenges for the field [11]. One available alter-
native to deal with this scenario is the use of distributed approaches (that will
be described in the next section), and thus it is important not to overlook
the implications in a distributed computing environment. If we distribute
the data across different nodes, the problem becomes that of having partial
rankings that need to be combined, without incurring in an important loss
of information.

Suppose that we have a number of features that need to be ranked, but
distributed across different computational nodes. Depending on the scenario
we are working with, the bottleneck might be the number of nodes available or
the number of features per node. To illustrate this, we show an illustrative
toy example for which pseudocode can be consulted in Algorithm 1. For
determining the degree of closeness between the ideal ranking (obtained when
data is all together) and the ranking achieved after combining the partial
rankings, we use the Normalized Discounted Cumulative Gain (NDCG) [24],
which is often used to measure effectiveness of web search engine algorithms
or related applications. This method returns a value between 0 and 1, where
1 means that the rankings are identical.

Figure 2(a) shows an example in which the number of features to rank
is M = 100 and the maximum number of nodes available is K = 100. The
color in the figure represents the NDCG value, as depicted in the colorbar
in the right of the figure. As expected, when all the features are present on
each node, the NDCG value is 1 since the rankings are identical. However,
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Algorithm 1: Pseudo-code for generating the toy example
Data: D(M) ← training dataset with M input features

K ← number of nodes
M ← number of features
X←set of features, X = {X1, . . . , XM}
mk ← number of features to go to each node

Result: NDCG← similarity between the true ranking and the combined ranking

1 Generate a true ranking Rankt by generating a random value between 0 and 1, Score(Xi), for
each feature Xi ∈ X

2 for k ← 1 to K do
3 D(mk)

← subset of data with mk random features

4 Rank the features in this node according to their Score, obtaining a partial ranking
Rankp(k)

end
/* Combining partial rankings into a final ranking */

5 for each feature m in X do
6 Avg(m)← calculate the average of its position in all the partial rankings Rankp(k), ∀k ∈ K

end
7 Obtain a combined ranking Rankc by ordering Avg
8 NDCG← compare (Rankt, Rankc)

even in the case in which we have 10 nodes and 90 features on each node,
the rankings are not exactly the same, which gives us an idea about the
complexity of the ranking combination task. As can be seen, for obtaining
good results it is necessary that each node has a large number of features,
even when the number of nodes available is also large. The problem is that,
by doing so, the time complexity is not sufficiently reduced. Notice that in
a real scenario, each node has only partial information to rank the features
(because of not having the whole dataset), so the importance given to each
feature cannot be computed in an accurate way, as opposite as what happens
in this example, in which each node uses the true importance of each feature.

To simulate a real scenario, in which a feature ranking method has to
determine the importance of a feature according only to the data it has, we
include some random noise to the scores that represent the true importance
of each feature, since it is likely that, in some nodes, two features with close
relevance can be misranked. Figure 2(b) shows the same scenario as before,
but with some noise (in this case, added with a normal distribution with
mean 0 and variance 0.2). In this scenario, as can be seen, the distributed
ranking problem becomes even more complex.

As this simple example reveals, the problem of distributing the feature
ranking process is not easy to solve, even when we can use the true impor-
tance of the features, obtained from the whole set of examples. In fact, Ar-
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(b) Noise

Figure 2: Example to illustrate the problem of distributing feature rankings, with and
without noise, with M = 100 features.

row’s impossibility theorem [5] states that, when having at least two rankers
(in this case, nodes) and at least three options to rank (in this case features),
it is impossible to design an aggregation function that satisfies in a strong
way a set of desirable conditions at once (more details can be found in [5]).
So, this theorem also acknowledges how challenging it is to distribute the
feature ranking process.

In the next section a review of distributed approaches to ranking feature
selection algorithms is given.

3. Background

Traditionally, feature selection is applied in a centralized manner, i.e.,
a single learning model is used to solve a given problem. However, since
nowadays data may be distributed, feature selection can take advantage of
processing multiple subsets in sequence or concurrently. There are several
ways to distribute a feature selection task [20]. In this work we have con-
sidered that the data set is together in one very large dataset or that either
the data may be in different datasets in different locations (e.g., in different
parts of a company). In the former case data can be distributed on several
processors, whereas the latter can use the original distribution. Next, an
identical feature selection algorithm can be run on each and the results com-
bined. Other ways of distributing the feature selection task are a) streaming,
where large volumes of data may be arriving in a continuous infinite stream
in real time, and b) ensembles, where the dataset is not particularly large
but different feature selection methods need to be applied to learn unseen
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instances and combine results. For further details of both, the interested
reader can consult the paper by Bolón-Canedo et col. [11].

The two main approaches to partitioned data distribution are by features
(vertically) or by samples (horizontally). Distributed learning has been ex-
tensively studied during the last years, mostly focusing on scale up datasets
that are too large for batch learning by samples [8, 17, 45]. Due to its im-
portance, there are some frameworks available such as MLlib, Spark’s open-
source distributed machine learning library [32] or MADlib that provides
an evolving suite of SQL-based algorithms for machine learning, data min-
ing and statistics that run at scale within a database engine [21]. However,
when dealing with big dimensionality datasets, researchers, of necessity, have
to partition by features. For instance, in the case of DNA microarray data,
the small sample size combined with big dimensionality prevent the use of
horizontal partitioning. Some methods that take into account some of the
particularities of these datasets, such as the high redundancy among features,
were presented by Sharma et al. [42] and Bolón-Canedo et al. [10], the lat-
ter at a much lower computational cost. Including other type of datasets,
Prasad et al. proposed a distributed parallel feature selection technique that
employs a vertical distribution strategy for a dataset to exploit parallel com-
putation [36]. It uses Information Gain filter-based ranking method which
evaluates multiple disjoint feature subsets of dataset in parallel. Zadeh et
al. [47] presented a vertically distributed filter method which handles the
redundancy with consistently comparable results with centralized methods.
They formalized the feature selection problem as a diversity maximization
problem by introducing a mutual-information-based metric distance on the
feature.

Finally, there are some approximations that are able to deal with horizon-
tal as well as vertical data partitioning. Banerjee & Chakravarty proposed
a secure distributed protocol that will allow feature selection for multiple
parties without revealing their own data [7]. Another is a distributed par-
allel feature selection method that can read data in distributed form and
perform parallel feature selection in symmetric multiprocessing mode via
multithreading and massively parallel processing [49]. Recently, Hogde et
al. present a distributed processing framework for feature selection using the
AURA neural network [6] and Apache Hadoop [22]. They have used five fea-
ture selectors (mutual information, Correlated Feature Selection, Gain Ratio,
Chi Square and Odds Ratio) which may be used independently or coupled
with the AURA k-NN for classification or prediction. Moreover, there are
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some approximations adapted to specific issues, such as the framework pre-
sented by Zhao et col. that combines distributed feature selection methods
and econometric models for efficient economic analysis [48]. They developed
a subtractive clustering based feature selection algorithm and an attribute
coordination based clustering algorithm to select and identify the important
features of data in both horizontally and vertically distributions.

Scalability of feature selection is still an open challenge in the machine
learning community and how to design efficient and distributed algorithms to
speed up the computation is still a fertile area and needs deeper investigation
[29]. The work presented herein tries to study the problem of the distribution
of feature rankings in both the two typical scenarios exposed above (i.e. when
the data is divided by features and by samples), aiming at finding a way to
reduce the computational burden of the feature ranking algorithms in cases
in which we deal with large datasets.

Also, a particularity of the works mentioned in this section is that they
were focused on distributing the feature selection process without degrading
the classification accuracy. Different from them, in this work we study the
distributed problem from a perspective independent of the dataset, trying to
give some recommendations about the behavior of different feature ranking
and feature combination methods, in this scenario. Our idea is to provide
guidelines to the interested reader, according to the resources available, con-
sidering the number of nodes usable and the number of features to deal with.
The remaining of this article aims at answering questions such as how impor-
tant the selection of a good ranking aggregation method is, or the tolerance
of feature selection methods for working on partial data.

4. Distributing feature rankings

In this section we will present some strategies that are possible when
distributing feature rankings. The first choice to make is if dividing the data
by samples or by features, usually depending on if the dataset is too large in
terms of samples or in terms of features. Then, the distribution of the data
can be done in disjoint subsets or allowing for some overlap. And, finally, we
need another strategy to combine the rankings obtained over the different
partitions into a final ranking of features. In Table 1, we can see an overview
of some of the possible strategies that we have to deal with when distributing
the feature ranking problem. In the following subsections, we will comment
on them in more detail.
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Table 1: Some strategies for distributing feature rankings.

Distrib. by samples Distrib. by features Aggregation methods
- Disjoint subsets of samples - Random subsets of features - Best rank
- Bootstrap subsets of samples - Subsets with predefined overlap - Arith. mean

- Geom. mean
- Median

4.1. Distribution by samples

In distributed learning, the most common approach is to partition data by
samples. In the scenario at hand, this means that we have different rankings,
obtained from different examples, but all the rankings are complete.

How to divide the available data between different nodes is not an easy-
to-solve question. The first option that might cross our minds is to divide
the total number of samples into the number of nodes available, into disjoint
subsets. So, if we have K nodes and N samples, the task is to put N/K
samples on each node, so that all the nodes have the same number of samples,
but each node contains different samples. Although it might seem quite
simple, this approach can produce acceptable results as long as the number
of samples on each node is not too small (some feature ranking methods
might suffer from overfitting when having more features than samples).

Then, another approach is the popular bootstrap sampling, in which we
select subsets of N/K samples for each node, randomly taken, with replace-
ment. The reason to select subsets of N/K samples (instead of N , as in
bagging) is to maintain the computational complexity reduction to the same
ratio as in the disjoint subsets approach. Notice that it is well-known that
bootstrap has some desirable properties, for example for reducing bias in es-
timates [15], so this is the approach that will be used in the experiments in
Section 5.

At this point, it is necessary to bear in mind that some feature rank-
ing methods return both a ranking and a score for each feature, such as
Mutual Information Maximization (MIM) [28]; while others only return a
ranking, such as minimum Redundancy Maximum Relevance (mRMR) [35]
or Recursive Feature Elimination for Support Vector Machines (RFE-SVM)
[19]. In the case of having both a ranking and a score, after running the
feature selection algorithm on each node, for each feature Xm we will have
a set of K different scores {Score(m, 1), . . . , Score(m,K)}. So, instead of
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using aggregation methods, we can estimate the score of a given feature
Score(Xm) computed as the average of the scores for each feature across the
different nodes, such that Score(Xm) = avg(Score(m, 1), . . . , Score(m,K)).
However, if we only have a ranking, we will need to use other aggregation
methods, which are commented on Section 4.3.

4.2. Distribution by features

Although the most common approach when dealing with distributed
learning is to divide the data by samples, it might be also interesting to
divide the data by features, especially in some situations in which the num-
ber of features is, indeed, the bottleneck of the algorithm —as happens with
DNA microarray data [12]. In this case and, unlike the situation in which
the distribution is made by samples, the rankings are partial, so their com-
bination is much more challenging.

In this case, it is not possible to distribute the data in disjoint subsets of
features, since some common features across the different nodes are neces-
sary to connect the partial rankings. Therefore, a certain level of overlap is
strictly required when deciding how to distribute the features over the avail-
able nodes. The overlap is defined as the subset of features that are common
across different nodes. Based on this definition, in the case of horizontal
partition (section 4.1), the overlap is complete. In Figure 3 we can see an
example of overlap between two nodes. Notice that the level of overlap is
something that needs to be carefully examined. If the overlap is too low, as
in Figure 3(a), the performance is expected to be very poor, since it would
be very difficult to connect the different partial ranks. And, on the contrary,
if the overlap is too high, as in Figure 3(b) the performance is expected to
be good, but we will not be reducing the complexity of the original problem.
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Figure 3: Example of two cases of overlap between sets of features where the numbers
represent the features’ ID. Overlapping features are highlighted in red.
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A possible strategy is to randomly select the features for each node, in a
similar way as bootstrap but with replacement. In this scenario, a natural
question that arises is “Which is the minimum number of nodes that we need
in order to ensure (in expectation) that a tuple of features will be ranked in
a fixed number of nodes?” Because of the random selection, we can answer
this question with the following corollary.

Corollary 1. In order to ensure that, in expectation, each tuple-t (i.e. t = 2
for a pair, t = 3 for a triplet etc.) of features will be ranked in v nodes, the
total number of nodes that we need is given by the following expression:

K =
M !

(M − t)!

(mk − t)!

mk!
v, (1)

where M is the total number of features and mk is the number of features per
node.

Proof. The total number of features can generate
(
M
t

)
different tuples. On

the other hand, in each node we have mk features, and thus
(
mk

t

)
different

tuples. As a result, in expectation, we need
(
M
t

)
/
(
mk

t

)
nodes to make sure

that every tuple-t is ranked in one node. Moreover, if we want to make sure
that each tuple-t will be ranked in v nodes, the number of nodes that we
need is given by the following expression:

K =

(
M
t

)(
mk

t

)v =
M !

(M − t)!

(mk − t)!

mk!
v

While this corollary seems counterintuitive, we can further motivate it by
exploring the limit cases. If we assume that the number of features per node
is equal to the total number of features, i.e. mk = M , then, in order to make
sure that each tuple t of features will be ranked in v nodes, we just need v
nodes. While, if we assume that the number of features per node is equal to
t, then, in order to make sure that each tuple t of features will be ranked in
v nodes, we just need

(
M
t

)
× v nodes in expectation.

Because of the random sampling of the features, we need to make sure
that, at the end of the process, all the features were selected at least once to
appear on each node. This can be solved, for example, by adding the features
not selected (if any) to the last node.
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Another way to ensure that all the features are ranked at least once
is to force the subsets to have a predefined level of overlap between the
features in one node and the remaining features. Let Xi = {X1, . . . , Xj}
be the set of features assigned to node i and Xr = {Xj+1, . . . , XF} the
remaining features that will be assigned to other nodes. If we are considering
10% of overlap, we will add to Xi the 10% of features in Xr, randomly
picked. The drawback within this approach is that it is impossible to ensure
a certain overlap between tuples of nodes, as we did with Corollary 1 for the
random selection. In Section 5.1 we will explore how these different proposed
strategies behave.

4.3. Aggregation

After partitioning the data into several nodes and applying a feature
ranker to each node, we will have different rankings that need to be combined.
Several strategies can be used to perform this task, but in this paper we have
chosen the following four methods [26]:

• best.rank: assigning to each element to be ranked the best position
that it has achieved among all rankings.

• median: assigning to each element to be ranked the median of all the
positions that it has achieved among all rankings.

• arith.mean: assigning to each element to be ranked the mean of all
the positions that it has achieved among all rankings.

• geom.mean: assigning to each element to be ranked the geometric
mean of all the positions that it has achieved among all rankings.

We will illustrate the behavior of these methods with a simple example.
First, suppose that we are working with complete rankings of features (those
obtained when data is partitioned by samples). Imagine that we have 5
different features to be ranked {a, b, c, d, e}, and we have 5 different rankings
of them R1, R2, ..., R5, as can be seen in Table 2. The last four columns of
the table illustrate the calculations made by each method. For example, the
method best rank computes the best value achieved by each feature along the
different rankings, where best means the highest position. Notice that with
this method, there was a tie. When this happens, this method returns the
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Table 2: Example of how the aggregation methods work with complete rankings.

Element R1 R2 R3 R4 R5 best rank median arith mean geom mean
a 1 2 3 1 1 1 1 1.6 1.4
b 2 1 1 2 3 1 2 1.8 1.6
c 3 3 2 5 2 2 3 3.0 2.8
d 4 4 5 3 4 3 4 4.0 3.9
e 5 5 4 4 5 4 5 4.6 4.6

elements which are tied in their original position. Therefore, in this example,
all the methods will return the ranking {a, b, c, d, e}.

When the data is distributed by features, each node cannot rank all the
features, so the rankings are called partial. Now, imagine that we have
6 different features to be ranked {a, b, c, d, e, f}, and 3 nodes, such that 2
elements go to each node. Suppose that we are considering 50% of overlap,
so an extra feature from the remaining nodes goes to each node. Then, for
example, we will have elements {a, b, c} in the first node, elements {c, d, f} in
the second node, and elements {e, f, a} in the third node. The three partial
rankings can be seen in Table 3, in which elements not present in a given
node are being assigned the last position in the ranking, according to the
implementation provided in [26] (6, in this example). In this case, the best
rank method will return {a, d, c, f, b, e}, whereas the remaining methods will
return {a, f, c, d, b, e}.

Table 3: Example of how the aggregation methods work with partial ranks.

Element R1 R2 R3 best rank median arith mean geom mean
a 1 6 1 1 1 2.7 1.8
b 3 6 6 3 6 5.0 4.8
c 2 3 6 2 3 3.7 3.3
d 6 1 6 1 6 4.3 3.3
e 6 6 3 3 6 5.0 4.8
f 6 2 2 2 2 3.3 2.9

Notice that some of these methods are more likely to have to deal with
ties than others (e.g. the best rank method is prone to have ties, since the
set of possible values obtained by best rank is much more reduced than the
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possible values received by arith mean). A further discussion about this issue
can be found in Section 5.2.

5. Experiments

In this section we empirically evaluate some of the strategies commented
on the previous section. We use six datasets from the UCI repository which
are detailed in the first six rows of Table 4. These are chosen to have a vari-
ety of sample-feature ratios, and a range of multi-class problems. Moreover,
we have included seven widely-used binary microarray datasets [12], which
are available for download in [1, 44, 2]. These data sets are known to have
many redundant features. This fact complicates the problem of vertically
distributed feature ranking because if two redundant (and relevant) features
are in the same node, a good feature ranking method can deal with this.
But, if these two redundant features are in different nodes, the partial rank-
ings built on each node cannot take care of this redundancy among them.
However, we will show good performance results. The reason for choosing
binary datasets is that they are much more common in the literature than
the multiclass ones. As a matter of fact, a typical microarray dataset consists
of distinguishing between having a given cancer or not, therefore the great
majority of the datasets are binary. In order to estimate mutual information
of continuous features, the datasets were discretized, using an equal-width
strategy into 5 bins.

In the following sections, we investigate the questions: “how can we deal
with overlap between features?”, “which is the best aggregation method?”,
“which is the behavior of the different feature ranking methods when dis-
tributing the data?”, and, finally, “which is the relationship of these results
with the classification accuracy?”. To address these questions, we use the
datasets detailed in Table 4.

Notice that, in the experiments carried out in this section, we do not take
into account the computational time, except the fact that the training time
is assumed to be reduced when dividing the data into the available nodes.
This is because the focus of this paper is to find how much information about
the features is lost when distributing the feature ranking process.
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Table 4: Summary description of the datasets used in experiments.

Dataset Features Samples Classes
Ionosphere 34 351 2
Landsat 36 6435 6
Lungcancer 56 32 3
Semeion 256 1593 10
Soybeansmall 35 47 4
Waveform 40 5000 3
Brain 12625 21 2
CNS 7129 60 2
Colon 2000 62 2
DLBCL 4026 47 2
GLI 22283 85 2
Ovarian 15154 253 2
SMK 19993 187 2

5.1. Which options are indicated for dealing with overlap when distributing
by features?

In Section 4.2 we commented on the different options that we had to
ensure some overlap between the features on each node, when distributing
the data by features, which is essential for a correct integration of the partial
rankings. In Figures 4 and 5 we can see a comparison between forcing a
predefined level of overlap (in this case, 50%) and selecting randomly the
features to go to each node.

For these experiments, we have chosen the microarray datasets and three
of the UCI datasets (Ionosphere, Landsat and Waveform). In the case of
UCI datasets, we divided the data into up to 10 nodes, while in the case of
microarray datasets, and because they have a larger number of features, we
distributed the data into up to 100 nodes. For simplicity, the MIM feature
ranking method and the best rank aggregation method were chosen; the ex-
periments were repeated 100 times and we are showing the average NDCG
values (obtained by comparing the combined ranking with the ranking ob-
tained with the whole data). As the NDCG measure tends to obtain higher
results if the number of elements to rank is high (as happens with microarray
data), it is common to compare only the top ranked elements. For instance,
when evaluating the performance of web search engines, it is common to com-

14



0 20 40 60 80 100

# Nodes

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

N
D

C
G

Predef overlap
Random overlap

(a) Brain

0 20 40 60 80 100

# Nodes

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

N
D

C
G

Predef overlap
Random overlap

(b) CNS

0 20 40 60 80 100

# Nodes

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

N
D

C
G

Predef overlap
Random overlap

(c) Colon

0 20 40 60 80 100

# Nodes

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

N
D

C
G

Predef overlap
Random overlap

(d) DLBCL

0 20 40 60 80 100

# Nodes

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

N
D

C
G

Predef overlap
Random overlap

(e) GLI

0 20 40 60 80 100

# Nodes

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

N
D

C
G

Predef overlap
Random overlap

(f) Ovarian

0 20 40 60 80 100

# Nodes

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

N
D

C
G

Predef overlap
Random overlap

(g) SMK

Figure 4: Experiments with different numbers of features per node and different techniques
for dealing with overlap (50% predefined overlap and random sampling) on microarray
datasets. NDCG measures the similarity with the ideal ranking.

pare only the top 10 entries. In DNA microarray analysis, it is also common
to focus only on the top ranked features, so in the experiments concerning
microarray datasets we will compute NDCG comparing only the top X fea-
tures, being X the 10% of the total number of features (so, for instance, if
we are dealing with Colon dataset, we compare the top 200 features).

As can be seen from the experimental results shown in Figure 4, using a
predefined level of overlap clearly outperforms the results achieved when the
overlap is random, and this improvement is more pronounced as the number
of nodes increases —which implies a higher complexity of the problem. Notice
that, for the sake of fairness, the number of features to go to each node is
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the same both when we are using a predefined level of overlap and when we
are randomly selecting the features belonging to each node.
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Figure 5: Results of the experiments for measuring similarity (by using NDCG) with
different numbers of features per node and different techniques for dealing with overlap
(50% predefined overlap and random sampling), on Waveform, Landsat and Ionosphere
dataset

However, focusing on the results from Figure 5 that test datasets with a
much smaller number of features, we can see that using a predefined level
of overlap very slightly outperforms the results achieved when the overlap
is random, although in light of the small differences, the authors cannot
recommend one method over the other in this setting.

It is necessary to bear in mind that, when picking random subsets of
features for each node, the level of overlap cannot be determined nor chosen
a priori (in fact, it might be even possible that some features are never
selected, and hence they are never ranked). However, if we want to control
this, we can use the formula presented in Eq.(1), which allows us to estimate
how many nodes we need if we want to ensure a certain number of features
present in tuples of nodes.

Table 5 shows, according to Eq. (1), the number of nodes necessary for
datasets Waveform, Landsat and Ionosphere (check characteristics in Table
4) when we require different numbers of features per node (10, 20 and 30),
subject to the restriction that each combination of features (single feature,
pairs of features, triplets of features) goes to at least one node (v = 1). Notice
that, even with these datasets that do not have a very large number of fea-
tures, the number of nodes necessary increases exponentially when increasing
the requirements, unless we put a large number of features per node.

Taking into account this estimation about the desirable number of nodes,
we have performed several experiments on these datasets with MIM filter and
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Table 5: Estimated number of nodes necessary for different conditions computed from Eq.
(1)

Waveform Landsat Ionosphere
Feats per node Feats per node Feats per node

Combinations 10 20 30 10 20 30 10 20 30
Single 4 2 2 4 2 2 4 2 2
Pairs 18 5 2 14 4 2 13 3 2

Triplets 83 9 3 60 7 2 50 6 2

four different aggregation methods. The results can be seen in Figure 6, in
which the experiments were run 100 times and we are showing the average.

As can be seen, even when using the number of nodes suggested by Eq.
(1) (which can be consulted in Table 5), and in theory ensuring that each
single feature, pair or triplet of features is present in at least one node, in
some cases the obtained rankings are far from the ideal (i.e. the ranking
obtained with the whole dataset, NDCG=1). Again, there results reinforce
the idea on how complex dealing with partial ranking is. Also, for the three
datasets considered, it is interesting to see that the improvement when using
triplets instead of pairs of features is not very notable, so this is an indication
that perhaps it is better to use simpler models.

Finally, it is worth noticing the different performance achieved when using
the four different aggregation methods considered (see Figure 6), being best
rank the one obtaining the best results in this case. The next subsection
will try to shed light on the issue of which of those is the best aggregation
method on the datasets we choose.

5.2. Which is the best aggregation method?

In Section 4, we mentioned that there are several strategies that can
be used to combine the partial rankings into a final ranking of features.
Specifically, we chose four different methods, named best rank, arith mean,
geom mean and median. As could be seen in the previous subsection, these
four methods lead to very different NDCG values, so in this subsection we
will perform some experiments to see if some of the aggregation methods are
superior to the others in both cases considered, i.e. partitioning by samples
and by features.
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Figure 6: NDCG results on the experiments with different numbers of features per node
and different numbers of combinations (tuples), on Waveform, Landsat and Ionosphere
dataset

First, we study the behavior of the aggregation methods when the parti-
tion of the dataset is made by samples. Since the number of samples of the
UCI datasets presented in Table 4 ranges from 32 to 6435, the number of
nodes has to vary accordingly. Thus, we perform separate experiments. For
the UCI datasets with a small number of samples (Ionosphere, Lungcancer
and Soybeansmall), we tested up to 10 nodes. Figure 7 (left column) shows
NDCG values on average over these three datasets, with 100 repetitions, for
the four aggregation methods considered. In both cases we are using MIM
as feature ranking method. As can be seen, best rank is more affected by
the increase in the number of nodes and shows a poorer performance than
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their counterparts. Figure 7 (right column) shows also the averaged NDCG
values, but in this case we selected the UCI datasets with the highest number
of samples (Landsat, Semeion and Waveform) and so we tested a number of
nodes between 10 and 100. Again, the best rank method is clearly inferior to
the other approaches.

Trying to understand the poor performance of best rank in this scenario,
let us recall how the aggregation methods behave when dealing with complete
rankings, checking the example shown in Table 2. Notice that, having an im-
portant number of elements with the same score (as it is likely to happen with
best rank, and to a lesser extent, with median), might produce poor results.
In fact, the larger the number of nodes, the smaller the number of samples
that go to each node, when dividing the data by samples. And, when losing
such an amount of information, it is likely that the rankings are inaccurate,
leading to ties and, eventually, to a degradation in the performance of the
best rank method. In fact, this phenomenon can be seen in Figure 7. This
brings up an interesting line of future research, that might be to develop an
aggregation method that can deal more efficiently with draws.

Regarding vertical partitioning, left column of Figure 8 shows the av-
eraged NDCG values over the six UCI datasets in Table 4 (six first rows),
when the features are divided into up to 10 nodes, with 50% of overlap, and
for 100 repetitions. In contrast to what happened when dividing the data
by samples, in this case the best rank method seems to be superior to the
others, although of course its performance degrades as the number of nodes
increases. Finally, right column of Figure 8 shows the averaged NDCG values
over the seven microarray datasets, when the features are divided into up to
100 nodes, with 50% of overlap, and for 100 repetitions for the four aggre-
gation methods considered. The results confirm that the best rank method
clearly outperforms the remaining aggregation methods when distributing
by features. Again, trying to understand the reasons behind the behavior
of the best rank method, let’s remember the example depicted in Table 3,
which showed how these methods work with partial rankings. In this case,
it is very likely that ties happen with the median method, leading to a poor
performance as the number of nodes increases. In fact, this behavior can
be seen in Figure 8(b). The superiority of the best rank method, in this
vertical scenario, is explained because it is the only method that can over-
look the presence of many “last” positions for each element, which greatly
affects the performance of the other methods. Thus, another possible line
of future work can be to improve the treatment of partial rankings by these
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Figure 7: Averaged NDCG across 3 datasets for each column and 100 repetitions; when
dividing by samples and using MIM feature ranking method. First column represents the
UCI datasets with the fewest samples (Ionosphere, Lungcancer and Soybeansmall) and
second column represents the UCI datasets with the largest number of samples (Land-
sat, Semeion and Waveform). The box indicates the upper/lower quartiles, the horizontal
line within each shows the median value, while the dotted crossbars indicate the maxi-
mum/minimum values.

20



aggregation methods.
In light of these results, the authors suggest the use of the arith mean

method when dividing by samples, and the best rank method when dividing
by features.

5.3. Which is the behavior of the different feature ranking methods when
distributing the data?

In this subsection, we will study the tolerance of some popular feature
ranking methods when working with distributed data, and thus forced to
deal with incomplete datasets (either because the data was partitioned by
samples or by features). Feature ranking methods can be divided into uni-
variate methods—those that take into account only the individual relevance
of each feature—and multivariate methods—those which take into account
feature dependencies. In theory, it is expected that univariate methods are
more tolerant to incomplete data than multivariate methods, although at
the cost of missing feature dependencies. Figure 9 shows the results of a
small experiment with Waveform dataset and both MIM (univariate) and
Relief [25] (multivariate) feature rankers, when dividing the data by samples
into up to 100 nodes and with 100 repetitions. Notice that, since these two
methods return both a ranking and a score for each feature, we do not need
an aggregation method since the total score is calculated by adding partial
scores, as commented in Section 4.1. As can be seen, the results achieved by
MIM are better than those obtained by Relief, showing NDCG values close
to 1 for any number of nodes tested.

In Figure 10, we can see another small experiment with microarray datasets
Colon and DLBCL, comparing univariate method MIM with multivariate
method mRMR. This last method was chosen as it is very popular for be-
ing applied to microarray datasets. When dealing with microarray data, it is
common that researchers employ multivariate methods, since it is well-known
that most genes in a microarray experiment are redundant. The problem is
that dealing with redundancy implies a higher computational cost, which
makes more necessary to distribute the feature ranking process. For exam-
ple, the theoretical complexity of MIM is O(NM) (where N is the number of
samples and M is the number of features) whilst that of mRMR is O(NM2).
When the number of features is in the order of thousands (as it is the case
with microarrays), this increase in complexity becomes, in some cases, un-
bearable.
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Figure 8: Averaged NDCG across sevaral datasets and 100 repetitions when dividing by
features and using MIM feature ranking method, with 50% overlap. First column uses
the 6 first datasets on Table 4 and second column uses 7 microarray datasets on the same
table. The box indicates the upper/lower quartiles, the horizontal line within each shows
the median value, while the dotted crossbars indicate the maximum/minimum values.
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Figure 9: NDCG results when dividing data by samples and estimating the combined
score, for a univariate (MIM) and a multivariate (ReliefF) method.

Because of the time complexity restrictions of mRMR (it takes in the
order of days to compute the whole ranking for some datasets), we run the
experiment only with Colon and DLBCL datasets, and we started the number
of nodes in 20. As can be seen from Figure 10, the results when using mRMR
are worse than when using MIM. For DLBCL dataset, the minimum NDCG
obtained with MIM was around 0.87, whereas with mRMR it around 0.73.
Even more drastic is the deterioration in the case of Colon, in which the
worst NDCG value with mRMR drops below 0.6. In light of these results,
when using multivariate methods (and although these are the ones which can
benefit more from the reduction in complexity), the information loss when
aggregating the rankings affects the results much more than in the case of
the less complex univariate methods.
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Figure 10: NDCG results for Colon and DLBCL datasets when dividing by features,
comparing univariate (MIM) and multivariate (mRMR) methods on microarray data.

From these small experiments we can infer that, in fact, not all the fea-
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ture ranking methods are equally tolerant for dealing with incomplete data.
Therefore, in order to study this issue in more detail, we have chosen a suite
of 7 information theoretic feature selection methods, that also have been
analyzed in a previous work [14] (see Table 6 for the details of the meth-
ods). Notice that, since not all of these methods return both a ranking and
a score for each feature, we need to use aggregation methods to combine the
rankings. This new set of experiments will be performed on UCI datasets,
due to the computational burden of multivariate methods when dealing with
microarray data.

Table 6: Feature ranking methods used in the experiments.

Method Uni/Multivariate Authors
Mutual Information Maximization (MIM) Univariate Lewis [28]
minimum Redundancy Maximum Relevance (mRMR) Multivariate Peng et al. [35]
Joint Mutual Information (JMI) Multivariate Yang & Moody [46]
Double Input Symmetrical Relevance (DISR) Multivariate Meyer & Bontempi [33]
Conditional Infomax Feature Extraction (CIFE) Multivariate Lin & Tang [31]
Interaction Capping (ICAP) Multivariate Jakulin [23]
Conditional Redundancy (CONDRED) Multivariate Brown et al. [14]

Analogously to Section 5.2, we start by analyzing the case of dividing
by samples, separating the datasets according to the number of samples.
So, Figure 11 shows the averaged NDCG values over the three datasets with
the smallest number of samples (Ionosphere, Lungcancer and Soybeansmall),
dividing them in up to 10 nodes, for 100 repetitions. Since in Section 5.2 we
have seen that the aggregation method arith mean was the most appropriate
for a horizontal distribution, we restricted these experiments to this method.

As expected, the performance of the different feature selection methods
worsens as the number of nodes increases, since the loss of information is
higher. In light of these results, CONDRED seems to be the best option in
this scenario. Notice that in these experiments we are not evaluating the
efficiency of feature selection methods in selecting useful features1, but the
tolerance of these methods to deal with incomplete data.

Figure 12 shows also the average NDCG values for 100 repetitions, in this
case for datasets Landsat, Semeion and Waveform (with the largest sample

1For an exhaustive review of these feature selection methods, please check Brown et
al.[14]
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Figure 11: Averaged NDCG across the 3 datasets with the smallest number of samples
(Ionosphere, Lungcancer and Soybeansmall) and 100 repetitions when dividing by samples
and using arith mean as aggregation method. The box indicates the upper/lower quartiles,
the horizontal line within each shows the median value, while the dotted crossbars indicate
the maximum/minimum values.
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size), dividing the samples in a number of nodes between 10 and 100. In this
case, the methods that are more robust to incomplete data are MIM, JMI
and DISR, with NDCG values over 0.95, even when dividing the samples in
up to 100 nodes.
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Figure 12: Averaged NDCG across the 3 datasets with the largest number of samples
(Landsat, Semeion and Waveform) and 100 repetitions, when dividing by samples and
using arith mean as aggregation method. The box indicates the upper/lower quartiles,
the horizontal line within each shows the median value, while the dotted crossbars indicate
the maximum/minimum values.

Figure 13 shows the averaged NDCG values over the six first datasets
described in Table 4, when dividing the features in up to 10 nodes, with 50%
of overlap and 100 repetitions. In this case, it is necessary to highlight the
good behavior of the methods MIM, mRMR, JMI and DISR, with NDCG
median values over 0.9 for any number of nodes tested.
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Figure 13: Averaged NDCG across the first 6 datasets (Ionosphere, Lungcancer, Soybeans-
mall, Landsat, Semeion and Waveform) in Table 4 and 100 repetitions, when dividing by
features and using best rank as aggregation method, with 50% overlap. The box indicates
the upper/lower quartiles, the horizontal line within each shows the median value, while
the dotted crossbars indicate the maximum/minimum values.

27



To sum up, it seems that all the methods tested can deal quite satisfac-
torily with incomplete data, even when losing information. It is necessary
to highlight the good performance shown by the MIM and JMI methods,
for any scenario tested. In fact, JMI was identified in [14] as having the
three desirable characteristics of an information-based selection criteria: it
takes into account conditional redundancy, it keeps a balance between rele-
vance and redundancy and it is usable with small sample sizes. Moreover,
it presented the best trade-off (in the Pareto-optimal sense) of accuracy and
stability. JMI has also shown to have superior performance than other fea-
ture selection methods based on mutual information in semi-supervised [40]
and multi-label data scenarios [41].

Nevertheless, the results presented in this subsection only evaluate if these
feature selection methods are able to build a final ranking from incomplete
rankings as similar as possible to the ranking obtained with the whole dataset.
To measure the classification accuracy that is lost in the process is a different
question, which will be discussed in the next subsection.

5.4. Relationship with classification accuracy

At this point, it is necessary to clarify that including classifiers in our ex-
periments is likely to obscure the experimental observations related to feature
selection performance, since they include their own assumptions and partic-
ularities. It was demonstrated in a previous work [9] that certain classifiers
can obtain outstanding accuracy levels even when the subset of features is not
optimal and, on the contrary, other classifiers perform their own embedded
feature selection. For those reasons, in these experiments we use a simple
nearest neighbor classifier (k = 3), as it makes few (if any) assumptions
about the data, and avoids also the need for parameter tuning.

Figure 14 shows the classification accuracy between 0 and 1 obtained by a
3-NN classifier on the six UCI datasets presented in the first six rows of Table
4 using the four feature selection methods that reported good results both in
the previous subsection and in a previous work [14]: MIM, mRMR, JMI and
DISR. For evaluating the loss in classification accuracy when distributing
the data, we are comparing the results obtained when using the ranking
built with the whole dataset (“ideal” case), with the rankings achieved when
distributing the data by samples and by features. In the former case, we
used the aggregation method arith mean, whereas in the latter we used best
rank, as suggested in Section 5.2. In both cases we divided the data in 10
nodes and, in the case of distribution by features, we added a 50% of overlap
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Figure 14: Classification accuracy obtained with a 3-NN classifier on the first 6 datasets
on Table 4 and reported on average for 100 repetitions. The three curves in each graph
correspond to the ideal situation (all data in a unique node), and two distributed situa-
tions, ”samples” correspond to an horizontal distribution (by samples), and ”features” to a
vertical distribution (by features). When data is divided by samples, the arith mean aggre-
gation method was used while when data is divided by features, the best rank aggregation
method was employed.
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between nodes. Since for classification we need to establish a threshold in the
ranking returned by the feature selection method, we opted for considering
the top features from 5 to 30, with increments of 5. For calculating the
classification accuracy of both distributed approaches, the whole process was
repeated and averaged 100 times.

The experimental results show two clear tendencies according to the num-
ber of samples of the datasets tested. In the case of datasets with the highest
number of samples (such as Landsat, Semeion and Waveform), the loss of ac-
curacy when applying a distributed approach is not relevant. For Waveform
dataset, the worst option seems to be the distribution by features, which is
reasonable since distributing 40 features into 10 nodes intuitively implies an
important loss of information. On the other hand, the datasets with a small
number of samples (Ionosphere, Lungcancer and Soybeansmall) show more
pronounced differences between distributed and centralized approaches. It is
also interesting to see that in some datasets having more features contributes
to better classification performances whereas in other datasets the contrary
happens. However, analyzing the importance of specific features in these
datasets and their relation with classification accuracy is out of the scope of
this paper.

Finally, Figure 15 shows the classification accuracy obtained by a 3-NN
classifier on Colon and DLBCL microarray datasets using MIM (univari-
ate) and mRMR (multivariate) feature selection methods. As aggregation
method, we used best.rank, since we are distributing by features, and in this
case we divided the data into up 50 nodes and we added a 50% of overlap be-
tween nodes. As we need to establish a threshold in the ranking returned by
the feature selection method, we opted for considering the top features from
5 to 50, with increments of 5. For calculating the classification accuracy of
both distributed approaches, the whole process was repeated 100 times and
averaged.

These experimental results show that, overall, there is a negligible loss in
accuracy when applying a distributed approach. Moreover, we can see that
the results obtained by distributing the data are, in some cases, more stable
than those achieved with the whole ranking. This is because, in some way,
distributing the features across nodes and then combining the partial results
into a final one is the same idea also known as ensemble learning or mixture
of experts, which states that combining the outputs of several experts yields
better and more robust results than a single expert [27]. Again, analyzing
specific aspects related to classification is not the goal of this paper.
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Figure 15: Classification accuracy obtained with a 3-NN classifier on Colon and DLBCL
datasets and reported on average for 100 repetitions. The best.rank aggregation method
was employed.

In summary, these experiments demonstrate that it is possible to dis-
tribute the data without compromising notably the classification accuracy,
since this measure is the ultimate form of evaluation of the goodness of a
feature ranking method.

6. Conclusions and future work

This work has presented an overview of the different strategies than can
be performed when distributing the feature ranking process. Whether the
partition is being made by features or by samples, the crucial point is the
combination of the incomplete rankings generated at each node, aiming at
losing the smallest amount of information possible, compared to the ideal
ranking.

From the experiments carried out in this paper, we can draw some con-
clusions and recommendations:
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• How to distribute by features? In this case it is essential to in-
troduce some level of overlap between the features appearing in each
node, to ensure a correct combination of the partial rankings. We sug-
gest two different ways to ensure this overlap—establishing a desired
level of overlap or using a random level of overlap. The experimental re-
sults showed that they have similar performance, thus both techniques
can be employed in practical applications. The aggregation method
that works better in this scenario is the best rank.

• How to distribute by samples? In this case to divide the available
data in the different nodes, the authors recommend using bootstrap
samples and arith mean as an aggregation method.

• Which feature selection algorithm performs better? Regarding
the tolerance of feature ranking methods to incomplete data, we found
that, among a suite of information theoretic feature selection methods,
MIM and JMI show a good performance, which is interesting since
these methods also demonstrated a good trade-off accuracy/ stability
in a previous work [14].

As future work, we have identified an important need for developing new
aggregation methods that can deal more efficiently with partial rankings and
with ties along different rankings. Also, the problem of obtaining imbalanced
subsets when distributing datasets or the data set is already imbalanced in
its original distribution, can be an interesting line of research. Furthermore,
the distribution in both samples and features simultaneously might also be
explored. It is also interesting to note that the methodology presented in this
work is also directly applied to graph learning tasks, and more particularly
structure learning of Bayesian networks. All of the information based feature
selection methods we used can be seen as approximate iterative maximizers
of the conditional mutual information (CMI) [14]. Markov Blanket (MB)
discovery algorithms, such as IAMB, can be also seen as a special case of the
above framework. As a result this methodology can be naturally used with
MB discovery algorithms. Markov Blanket is an important concept that links
the feature selection with the structure learning. Using Pellet & Elisseef’s
[34] wording “Feature selection and causal structure learning are related by a
common concept: the Markov blanket.” Pellet & Elisseef [34] presented how
a generic feature selection algorithm returning strongly relevant variables can
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be turned into a causal structure-learning algorithm. Our work can thus be
used to derive distributed versions of the above structure-learning procedure.
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J. M., and Herrera, F. (2014). A review of microarray datasets and applied
feature selection methods. Information Sciences, 282:111–135.

[13] Bolón-Canedo, V., Sechidis, K., Sánchez-Marono, N., Alonso-Betanzos,
A., and Brown, G. (2017). Exploring the consequences of distributed fea-
ture selection in dna microarray data. In Proceedings of the International
Joint Conference on Neural Networks, IJCNN, pages 1665–1672. INNS.

[14] Brown, G., Pocock, A., Zhao, M.-J., and Luján, M. (2012). Conditional
likelihood maximisation: a unifying framework for information theoretic
feature selection. The Journal of Machine Learning Research, 13(1):27–66.

[15] Chernick, M. R. (2011). Bootstrap methods: A guide for practitioners
and researchers, volume 619. John Wiley & Sons.

[16] Costa, L. d. F., Rodrigues, F. A., Travieso, G., and Villas Boas, P. R.
(2007). Characterization of complex networks: A survey of measurements.
Advances in Physics, 56(1):167–242.

[17] Gupta, P., Sharma, A., and Jindal, R. (2016). Scalable machine-learning
algorithms for big data analytics: a comprehensive review. Wiley Interdis-
ciplinary Reviews: Data Mining and Knowledge Discovery, 6(6):194–214.

[18] Guyon, I. and Elisseeff, A. (2003). An introduction to variable and
feature selection. Journal of Machine Learning Research, 3(Mar):1157–
1182.

34



[19] Guyon, I., Weston, J., Barnhill, S., and Vapnik, V. (2002). Gene se-
lection for cancer classification using support vector machines. Machine
Learning, 46(1-3):389–422.

[20] Hand, D. J., Mannila, H., and Smyth, P. (2001). Principles of data
mining. MIT press.
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