1 research outputs found

    Input nonlinearity compensation and chattering reduction in a mobile hydraulic forestry crane

    No full text
    We present a sliding-mode-based control design for a telescopic link of a mobile-hydraulic forestry crane under bounded modeling uncertainties and external disturbances. Mobile hydraulic systems are typically subject to strong perturbation conditions and the design of resilient control solutions is an important challenge. Furthermore, nonlinear phenomena primarily, characterized by easily excited oscillations, an input nonlinearity, and friction, are dominating the dynamics. The proposed control scheme takes advantage of an input-nonlinearity compensation in order to overcome these problems and includes the formulation of a sliding-mode-control-based design. Two strategies for chattering attenuation are examined aimed at improving the controller performance. Experimental results performed over an industrial setup, including a comparison with a PID controller, confirm the efficacy of the proposed methodology
    corecore