251,710 research outputs found
Carbon in soils
Carbon is the fourth most common element in the galaxy(by mass) but does not even rank in the twelve most abundant elements on Earth. By far the most abundant source of carbon on Earth is in the crust as inorganic rocks such as calcite and limestone in marine and sedimentary deposits. These rocks have taken many millions of years to form. Other major inorganic sources are in the oceans and atmosphere
Possible inclusion of fish waste (scales and fins) in the diet of fishes in aquaculture
The scales and fins of some freshwater fish species (Sarotherodon galilaeus, Oreochromis niloticus, Tilapia zillii, Barbus callipterus, Hemichromis fasciatus) from Kainji Lake, Nigeria were analyzed for their organic and inorganic matter. The aim of such study is to determine the usefulness of these waste parts of the fish in fish feed preparation. In all instances, the inorganic matter was found to be quite high in the fish exoskeleton, and calcium formed the highest element in the scales and the fins. These waste materials are therefore, considered as possible replacement for mineral sources in fish feed and probably the feed for other livestoc
Bacteriophages as a model for studying carbon regulation in aquatic system
The interconversion of carbon in organic, inorganic and refractory carbon is still beyond the grasp of present environmentalists. The bacteria and their phages, being the most abundant constituents of the aquatic environment, represent an ideal model for studing carbon regulation in the aquatic system. The refractory dissolved organic carbon (DOC), a recently coined terminology from the microbe-driven conversion of bioavailable organic carbon into difficult-to-digest refractory DOC by microbial carbon pump (MCP), is suggested to have the potential to revolutionize our view of carbon sequestration. It is estimated that about 95% of organic carbon is in the form of refractory DOC, which is the largest pool of organic matter in the ocean. The refractory DOC is supposed to be the major factor in the global carbon cycle whose source is not yet well understood. A key element of the carbon cycle is the microbial conversion of dissolved organic carbon into inedible forms. The time studies of phage-host interaction under control conditions reveal their impact on the total carbon content of the source and their interconversion among organic, inorganic and other forms of carbon with respect to control source. The TOC- analysis statistics stipulate an increase in inorganic carbon content by 15-25 percent in the sample with phage as compared to the sample without phage. The results signify a 60-70 fold increase in inorganic carbon content in sample with phage, whereas, 50-55 fold in the case of sample without phages as compared with control. This increase in inorganic carbon content may be due to lysis of the host cell releasing its cellular constituents and utilization of carbon constituent for phage assembly and development. It also proves the role of phages in regulating the carbon flow in aquatic systems like oceans, where their concentration outnumbered other species
Predicting the impact of land use on the major element and nutrient fluxes in coastal Mediterranean rivers: The case of the Teˆt River (Southern France)
This study presents a detailed discrimination between the natural and anthropogenic sources of dissolved major elements in the Teˆt River, a typical small coastal river in the south of France. The main objectives were to quantify the materials that were released by human activities in the basin, and to determine the specific element inputs for the major land use forms. The dissolved material fluxes were estimated by weekly monitoring over a hydrological year (2000–2001) along the major water gauging stations, and the flux relationships were examined in the context of anthropogenic and natural basin characteristics as determined by a Geographical Information System (GIS). Intensive agricultural land use in the form of fruit tree cultures and vineyards has a strong control on the dissolved element fluxes in the river. Area specific element
releases for these cultures are greatest for SO4, with an estimated average of about 430 ± 18 keq km2 a1. This is P11 times the natural SO4 release by rock weathering. Also for K, NO3, PO4 and Mg, the specific releases were P6 times
the natural weathering rates (respectively about 44, 60, 4 and 265 keq km2 a1). Waste-waters are the other major source of anthropogenic elements in the river. They have an important role for the fluxes of inorganic P and N, but they are also a considerable source of Cl and Na to the river. For example, the average annual release of Cl is around 150 moles/inhabitant in the rural basin parts. Further downstream, however, where population density strongly increases, industrial effluents can enhance this value (>300 moles/inhabitant). The waste-waters contribute more than 70% of the dissolved inorganic N export to the sea, although their contribution to the average DOC export is almost negligible (3%)
Hierarchical Visualization of Materials Space with Graph Convolutional Neural Networks
The combination of high throughput computation and machine learning has led
to a new paradigm in materials design by allowing for the direct screening of
vast portions of structural, chemical, and property space. The use of these
powerful techniques leads to the generation of enormous amounts of data, which
in turn calls for new techniques to efficiently explore and visualize the
materials space to help identify underlying patterns. In this work, we develop
a unified framework to hierarchically visualize the compositional and
structural similarities between materials in an arbitrary material space with
representations learned from different layers of graph convolutional neural
networks. We demonstrate the potential for such a visualization approach by
showing that patterns emerge automatically that reflect similarities at
different scales in three representative classes of materials: perovskites,
elemental boron, and general inorganic crystals, covering material spaces of
different compositions, structures, and both. For perovskites, elemental
similarities are learned that reflects multiple aspects of atom properties. For
elemental boron, structural motifs emerge automatically showing characteristic
boron local environments. For inorganic crystals, the similarity and stability
of local coordination environments are shown combining different center and
neighbor atoms. The method could help transition to a data-centered exploration
of materials space in automated materials design.Comment: 22 + 7 pages, 6 + 5 figure
Self-assembly in polyoxometalate and metal coordination-based systems: synthetic approaches and developments
Utilizing new experimental approaches and gradual understanding of the underlying chemical processes has led to advances in the self-assembly of inorganic and metal–organic compounds at a very fast pace over the last decades. Exploitation of unveiled information originating from initial experimental observations has sparked the development of new families of compounds with unique structural characteristics and functionalities. The main source of inspiration for numerous research groups originated from the implementation of the design element along with the discovery of new chemical components which can self-assemble into complex structures with wide range of sizes, topologies and functionalities. Not only do self-assembled inorganic and metal–organic chemical systems belong to families of compounds with configurable structures, but also have a vast array of physical properties which reflect the chemical information stored in the various “modular” molecular subunits. The purpose of this short review article is not the exhaustive discussion of the broad field of inorganic and metal–organic chemical systems, but the discussion of some representative examples from each category which demonstrate the implementation of new synthetic approaches and design principles
- …
