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Abstract: Utilizing new experimental approaches and gradual understanding of the underlying
chemical processes has led to advances in the self-assembly of inorganic and metal–organic
compounds at a very fast pace over the last decades. Exploitation of unveiled information originating
from initial experimental observations has sparked the development of new families of compounds
with unique structural characteristics and functionalities. The main source of inspiration for numerous
research groups originated from the implementation of the design element along with the discovery of
new chemical components which can self-assemble into complex structures with wide range of sizes,
topologies and functionalities. Not only do self-assembled inorganic and metal–organic chemical
systems belong to families of compounds with configurable structures, but also have a vast array of
physical properties which reflect the chemical information stored in the various “modular” molecular
subunits. The purpose of this short review article is not the exhaustive discussion of the broad
field of inorganic and metal–organic chemical systems, but the discussion of some representative
examples from each category which demonstrate the implementation of new synthetic approaches
and design principles.

Keywords: self-assembly; supramolecular chemistry; coordination chemistry; polyoxometalates;
metal–organic frameworks; clusters

1. Introduction

The term self-assembly is frequently used to describe an extended network of equilibria which can
be exploited in synthetic chemistry in order to construct complex molecular structures from molecular
synthons linked by covalent bonds. This area of research is governed by a specific set of rules which
has attracted the interest of numerous research groups over the last decades. On the other hand,
the supramolecular chemistry aspect is considered a complementary research area and extends beyond
the molecular chemistry, has also attracted substantial interest and is responsible for the formation
of chemical systems using building blocks of appropriate structural features and chemical properties
interacting via non-covalent intermolecular forces. The first signs of this new field emerged in 1967 by
the work of Jean-Marie Lehn in the design and study of alkali-metal cryptates, and the identification of
the phenomenon of molecular recognition in chemical systems. This initial observation set the scene
for the development of the field of supramolecular chemistry [1] and resulted in the award of the Nobel
Prize in chemistry in 1987. Supramolecular chemistry investigates the interactions between molecular
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species and aims to shed light upon the underlying mechanisms which lead to the construction of
highly complicated and functional chemical systems, constructed by constituents which are held
by or temporarily interact with intermolecular bonds. Due to the instability of the non-covalent
interactions, the available molecular synthons can connect and disconnect reversibly, by rearranging
and re-organizing their components [2]. In other words, depending on a wide range of experimental
and chemical stimuli, they can self-organize spontaneously via the process of self-assembly into
well-defined supramolecular architectures. Self-assembly processes and supramolecular interactions
have been identified as the main driving forces responsible for the formation and ultimately for the
observed functionality of a wide range of chemical systems. Thus, we will focus our discussion
on a subset of inorganic and metal–organic systems and more specifically in polyoxometalates,
metal–organic frameworks (MOFs) and metal coordination cages.

The process of self-organization is generally considered to proceed over three stages: (1) molecular
recognition; (2) growth through the connection of multiple constituents; (3) termination, where the
process is completed [3]. A representative example of this process can be in polyoxometalate systems,
which can lead to the formation of a wide range of intricate and functional architectures. For example,
the self-assembly process is responsible for the formation of the family of molybdenum blue nano-sized
clusters, such as the wheel-shaped {Mo154} oxide cluster where intermolecular interactions can
promote the formation of vesicles depending on the experimental conditions [4]. The formation
of polyoxometalate-based vesicles is the result of a delicate balance between short-range attractive
Van der Waals forces, hydrogen bond forces, and repulsive electrostatic interactions between the
anionic clusters. As we mentioned earlier, the self-assembly process depends on a wide range of
external parameters (pH, concentration, ligands, templates, temperature, pressure, etc.); even small
variations of these parameters can affect the complex network of equilibria established initially in the
reaction mixture and consequently trigger the formation of different species in solution. Muller et al.
reported that the {Mo72Fe30} clusters in dilute aqueous solution behave as nano-sized weak inorganic
acids and can be deprotonated, according to the pH, which leads to the formation of different size
molecular nanoobjects (Figure 1) [5].
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Figure 1. Structure of the spherical {Mo72Fe30} Keplerate cluster. Mo, Blue and light blue polyhedral;
Fe, red polyhedral; Oxygen, red spheres.

The self-assembly process is usually system-specific, which makes our efforts to unveil the
underlying reactions and understand better the overall process extremely challenging. Apart from the
experimental approaches which occasionally involve real time monitoring of chemical reactions and
identification of short-lived intermediate species [6–8], theoretical calculations and simulation models
also make it possible, in some cases, to extract crucial mechanistic information. Fujita et al. reported the
simulation of the formation process of the M6L8 coordination cage (M = Pd (II) and L= pyridine-capped
tridentate ligands) in 3 stages (assembly, evolution, fixation), which is in agreement with the
experimental data [9]. The authors showed that the life time of the coordinatively unsaturated
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intermediate species play a key role in the self-assembly process of the final complete M6L8 cage.
Recently, the same group implemented the same simulation model to predict the formation of the larger
M12L24 cage (M = Pd (II) and L = pyridine-capped bidentate ligands) following a similar approach
(Figure 2) [10]. In this case, the self-assembly process revealed the existence of kinetically trapped
structures of lower nuclearity, while the observed behaviour depends on geometrical parameters
such as the bond angle of the ligands as well as the strength of the metal–ligand bond. This is a very
important observation, which needs to be taken into consideration when trying to understand the
underlying processes that govern the formation of large clusters. Very often, kinetic effects make
prediction of self-assembled structures of higher nuclearity clusters extremely challenging.
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Figure 2. Structural changes during the self-assembly process. Adapted from ACS Nano 2014, 8(2),
1290–1296. Copyright (2014) American Chemical Society.

Identification of intermediate species masked by the self-assembly processes during the “one-pot”
reaction is crucial for the understanding of the formation mechanism. Recently, Cronin et al.,
reported an alternative approach by employing a synthetic process under continuous flow conditions for
the investigation of self-assembly driven formation of molybdenum blue nanoclusters. The concurrent
control of four experimental variables (pH, Mo concentration, reducing agent, flow rate) kept the system
far from equilibrium for a given period of time which proved to be crucial for the identification and
isolation of the intermediate species [11]. In this case, it was concluded that the formation mechanism of
the {Mo(154−x)} family involves the {Mo36} cluster which acts as a structure-directing template (Figure 3).
The more we understand the mechanism behind the self-assembly processes, the more constructive will
be the implementation of a design element which will allow the construction of chemical systems with
intricate structures, unique properties and a large range of applications.
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2. Polyoxometalate Systems

2.1. POM-Based Clusters and Supramolecular Aggregates

Polyoxometalates are a class of discrete molecular inorganic clusters also known as polyoxoanions
or polyanions. These are formed by metals (addenda atoms) such as tungsten, molybdenum and
vanadium in their higher oxidation state; however, over the last decades, it has been shown
that other metals can serve as the primary atoms within POM clusters, such as niobium [12,13],
and tantalum [14,15]. POMs are composed of condensed metal-oxygen {MOx} polyhedra (x = 4 to 7).
POMs can be formed mainly by vanadium, molybdenum and tungsten due to their appropriate ionic
size and their ability to act as good acceptors of oxygen’s π electrons. The fundamental requirements
for a transition metal to serve as addenda are the ability to adopt a variety of coordination modes
(mainly 4 to 6) in response to acidification, have high positive charge, and are capable of pπ–dπ
interactions. However, there are a few examples that deviate from this set of rules, as reported by
Kortz et al., where the authors demonstrated the preparation and characterization of metal oxides
made of noble metals such as Au [16,17] and Pd [18–22] in the presence of supporting organic or
inorganic ligands.

There are a number of archetypal POMs that are well documented in the literature and many
other POMs contain structural features of these “classical” architectures. Such architectures are
dominant in the field because of their high reproducibility, stability and the fact that they can be
formed using several different types of addenda metal atoms. They can also incorporate a wide
range of heteroatoms and still maintain their structure, a feature not present in most examples
of polyoxometalates. The classical POMs are often used as starting materials for the construction
of larger structures or for the manufacturing of POM-based materials due to their stability under
specific experimental conditions. POM clusters can be classified in three general categories [23–25];
(1) heteropolyanions are the most explored category, and they consist of metal-oxide clusters of Mo, W,
V, which contain XO4

n− type heteroanions, where X = B, Si, Ge, P, and S. Heteroanions induce stability
to the clusters as well as to their lacunary derivatives generated by the removal of one or more addenda
atoms. In the first category for example, belong the two well-known POM archetypes, Keggin and
Dawson. The Keggin structure [(XO4)M12O36]n− (M = Mo, W; X = S, P, Si, et al.), which was confirmed
in 1933, consists of {MO6} octahedra connected to each other via edge sharing of oxygen ligands
forming {M3O13} triads, which are organised tetrahedrally around a central heteroatom. Similarly,
the Dawson structure [(XO4)2M18O62]n− is the result of the assembly process of two lacunary Keggin
monomers [XM9O34]n−; (2) isopolyanions are POMs that are comprised entirely of addenda atoms.
Typically, this means that only one type of metal is present; however, there are examples of mixed
metal clusters where both metals are addenda and technically such clusters are also iso-POMs. Due to
the lack of template heteroanion, isopolyanionic structures are less stable. An example for the second
category is the Lindqvist anion [M6O19]n− (M = W, Mo, V, Nb, Ta), which is formed by 6 edge-sharing
{MO6} octahedrals; (3) the Molybdenum Blues and Browns are the oldest class of POMs and were
discovered by Scheele in 1793, but the structures could not be determined until the development
of modern X-ray crystallographic analysis. They also represent the largest size of molecular POM
clusters with some approaching the size of small proteins (the {Mo368} “blue lemon” is ~6 nm in
diameter) [22]. Molybdenum Blues are defined by the fact that they contain mixed valence MoV/MoVI

addenda and have delocalised electrons capable of intervalence charge transfer from MoV to MoVI

facilitated by the π-orbitals of the bridging oxo ligands and this electronic interaction is responsible
for their characteristic intense blue colour. Molybdenum Browns are further reduced comparing
to Mo-Blues and have electrons localised between reduced MoV centres as Mo–Mo bonds which
contribute to the brown colour of these clusters. The reduction of molybdenum addenda is only
possible for {O = MoO5} containing structures POMs. This is due to the fact that the molecular orbitals
of {MOL5} complexes contain a non-bonding t2g orbital capable of accepting electrons, while in cis
{MO2L4} complexes all the t2g orbitals are associated with π-bonding to oxo ligands and as such there
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are no available non-bonding orbitals for electrons to occupy and reduction would destabilise the
clusters [26]. This rule induces certain constraints on the structural features of Molybdenum Blues and
Browns. The most well-known Molybdenum Blue structures are the giant wheels, {Mo154} [27] and
{Mo176} [28], and the {Mo132} Keplerate cluster [29], which are all constructed using the same structural
building block, {MoMo5}. The central building block is occupied by a pentagonal bipyramidal {MoO7}
unit, which is surrounded by five edge-shared {MoO6} octahedra along the equator of the bipyramid.
This pentagon is considered to be the fundamental unit responsible for the construction of elaborate
architectures (see Figure 4). In wheel structures, the pentagonal building blocks are connected into ring
architectures and are comprised of two such rings fused together. Each ring is formed from two distinct
building blocks known as {Mo8} and {Mo2}. The {Mo8} building block incorporates the pentagonal
unit described previously with an additional two {MoO6} octahedra connected to the pentagon via
corner sharing with four of the {MoO6} octahedra of the pentagonal unit. These additional molybdate
units on the pentagon connect to neighbouring {Mo8} units via corner and edge sharing to produce
the final ring-shaped structure. The rims of the wheel are supported by {Mo2} units, which consist
of two corner-sharing {MoO6} octahedra. They connect to the {Mo8} building blocks via three sites
of corner sharing. Two representative giant wheels—{Mo154}, [Mo154O462H14(H2O)70]14− [27] and
{Mo176}, [Mo176O528H16(H2O)80]16− [28]—have external diameters of 3.4 and 4.1 nm, respectively.
The {Mo176} has a smaller curvature because each ring possesses an additional {Mo8} building block
relative to the {Mo154}.
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Figure 4. Ball-and-stick representation of the {Mo6} pentagonal bipyramidal building block integral to
Molybdenum Blue and Brown architectures beside polyhedral and ball-and-stick representations of how
the pentagonal units are arranged within the {Mo154} wheel and {Mo132} Keplerate. (Colour scheme:
Mo, blue; O, red; the central Mo of the pentagonal units has been highlighted in pale blue).

Interestingly, POM-based structures such as Keggin, Dawson, Anderson, etc., can be used as
secondary building blocks for the construction of larger architectures. There are many methods
that can be used for the modification and functionalization of POM clusters, including the choice of
counterions, organic ligands and transition metals. The counterions are necessary for the existence
of POMs as they stabilize the negative charge, but they can also influence the self-assembly process
during the formation of POM structures. Depending on their size, charge, solubility etc., can stabilize
the intermediate building blocks and “transitional” species in solution, which ultimately influence
the structural features of the final product [24]. The organic ligands and first row transition metals
can be used as ligands and metal linkers. Additionally, the exchange of redox “innocent” templates
(e.g., SO4

2− and PO4
3−) with redox active ones (e.g., SO3

2−, SeO3
2−) is an alternative way to direct the

assembly process towards the formation of different structures (e.g., lacunary structures) and influence
the electronic properties of the clusters [30–32]. Lacunary POMs can be formed by expulsion of some
atoms from the complete structure, which tends to increase the nucleophilicity and consequently the
reactivity of the formed clusters towards electrophiles. This provides a unique opportunity for the
formation of larger architectures by reacting under appropriate experimental conditions unsaturated
POM structures with transitional metals, Figure 5, lanthanides and metal complexes [25]. Finally, it is
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clear that the plethora of design approaches and wide range of experimental parameters that can
influence the self-assembly process allows the preparation of an immense variety of POM architectures
with different sizes, compositions and properties, in a controllable fashion.
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Interestingly, polyoxometalate clusters have the tendency to interact constructively with other
inorganic or inorganic moieties and form supramolecular aggregates. For example, since 2008 and the
research of Mizuno et al. who reported the first hybrid complexes based on cucurbit[n]uril (CB[n])
and polyoxometalates [44] (Figure 6), various hybrid molecular solids based on POMs and CB[n]
derivatives have been investigated. The hybrid system of POMs and CB[n] has gained great interest
due to distinctive structural features. Recently, Lü and co-workers reported the first example of hybrid
solids based on Lindqvist-type POM anions [W6O19]2− and decamethylcucurbit[5]uril (Me10CB[5]) [45].
In the reported compound, {[Na2(W6O19)(Me10CB[5])(H2O)]·2H2O]n, the sodium ions, [W6O19]2−

anions and Me10CB[5] form 1D chains that are held together through supramolecular non-bonding
interactions such as C–H···π, dipole–dipole and hydrogen bonds resulting in a 3D supramolecular
host–guest network. The compound exhibits enhanced photocatalytic property for dye degradation
under visible light, due to cooperative effects induced by its components.
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In a similar approach, cyclodextrins (CDs) are cyclic oligosacharides comprised of 6 to 8
glucose units exhibiting torus-shaped ring structure comparable to the CB moieties discussed above.
An important distinction, though, is that the interior cavity of CDs is hydrophobic, while the
exterior side is hydrophilic; due to this architectural conformation, they can incorporate organic and
inorganic guest molecules of appropriate size. The main driving force in this case are dipole–dipole,
electrostatic forces, hydrogen bonding and van der Waals interactions [46,47]. Very recently,
Cadot et al. reported the isolation of the 1:1, 1:2, 1:3 adducts, which are formed due to the attractive
interactions including electrostatic, ion-dipole and hydrogen bonding between the longitudinal side
of Dawson anion [P2W18O62]6− and primary face of γ-CD, as well as a complex that is consisted of
a cationic octahedral cluster [Ta6Br12(H2O)6]2+ and γ-CD, which is held together by intermolecular
interactions [48]. Additionally, the authors demonstrated that the interaction of three constituents
([P2W18O62]6−, [Ta6Br12(H2O)6]2+, γ-CD) generate a three-component supramolecular hybrid system.
In this case, the [Ta6@2CD]2+ unit acts as a ditopic ionic linker forming a tubular chain with periodic
alternation of POMs and clusters. The same group reported a three-component hybrid assembly
organized through non-covalent interactions [49]. The supramolecular aggregate is based on the
nano-sized [Mo154O462H14(H2O)70]14− molybdenum blue wheel, which hosts a Dawson cluster,
[P2W18O62]6− which is capped by two γ-CDs moieties. The three components are held together
by intermolecular interactions (Figure 7).Inorganics 2018, 6, x FOR PEER REVIEW  8 of 26 
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Figure 7. Representation of the [Mo154O462H14(H2O)70]14− molecular wheel which hosts a Dawson
anion, [P2W18O62]6−, capped by two γ-CDs moieties.

2.2. POM-OFs

Polyoxometalate open frameworks (POM-OFs) are extended architectures that can be constructed
using POM-based clusters as building blocks. The interplay of supramolecular interactions
(through hydrogen bonds, van der Waals forces), as well as reactivity between POM clusters and
transition metals or metal complexes, can lead to the formation of extended networks of coordinatively
linked 1D chains, 2D sheets and 3D compounds. As shown in the figure below, the POM clusters can
be linked through transitional metals (TM) via grafted organic units, directly through transition metals,
through organic linkers and through organic linkers via transition metals (Figure 8) [50]. POM-OFs are
porous materials with interesting structural flexibility, stability and interesting physical properties.
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Moreover, the ability of POM species to accept and release electrons reversibly with marginal structural
changes makes them exceptional candidates for catalytic applications.

In 2017, Chang et al. following the above approach reported the synthesis of the networked
compound (en)[Cu3(ptz)4(H2O)4][Co2Mo10H4O38]·24H2O, which is the first 3D host–guest structure
with an Evans-Showell type polyoxometalate as the guest (Figure 9), while the compounds
(Hbim)2[{Cu(bim)2(H2O)2}2{Co2Mo10H4O38}]·5H2O and H2[Cu(dpdo)3(H2O)4][{Cu2(dpdo)3(H2O)4

(CH3CN)}2{Co2Mo10H4O38}2]·9H2O are the first 2D hybrid networks that include this type of POM
archetype [51]. In contrast with other POM building blocks (Keggin, Dawson), the reported examples
of Evans-Showell-based hybrids are quite rare. All three compounds showed promising catalytic
efficiency in the oxidation of sulfides and alcohols.Inorganics 2018, 6, x FOR PEER REVIEW  9 of 26 
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Figure 9. Representation of (en)[Cu3(ptz)4(H2O)4][Co2Mo10H4O38] compound. 3D host–guest framework
(ball-and-stick) with two enantiomers of [Co2Mo10H4O38]6− (polyhedral representation) as the guest.
(Colour scheme: Mo, teal; O, red; Cu, cyan; Co, yellow; C, black; N, blue; Lanthanide, pale yellow).

In a similar manner, Liu et al. utilized [10] Anderson and octamolybdate-based clusters and
CuII-based complexes to prepare a new family of hybrid networked compounds which exhibit a variety of
dimensions: [Cu2(2-pdya)(CrMo6(OH)5O19)(H2O)2]·3H2O, [Cu(3-dpye)0.5(γ-Mo8O26)0.5(H2O)4]·H2O,
[Cu(4-Hdpyp)2(β-Mo8O26)(H2O)2]·4H2O, [Cu4(µ3-OH)2(H2O)4(3-dpyh)(γ-Mo8O27)]·4H2O, [Cu2(4-
Hdpye)2(TeMo6O24)(H2O)6]·4H2O, [Cu3(3-dpyb)2(TeMo6O24)(H2O)8]·4H2O, [Cu2(4-Hdpyb)2
(TeMo6O24)(H2O)6]·4H2O, (3-dpye = N,N′-bis-(3-pyridinecarboxamide)-1,2-ethane, 4-dpye = N,N′-bis(4-
pyridinecarboxamide)-1,2-ethane, 4-dpyp = N,N′-bis(4-pyridinecarboxamide)-1,3-propane, 3-dpyb = N,N′-bis(3-
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pyridinecarboxamide)-1,4-butane, 3-dpyh = N,N′-bis (3-pyridinecarboxamide)-1,6-hexane) [52]. All compounds
exhibit good electrocatalytic activities for the reduction of BrO3

– and H2O2, and photocatalytic activity towards
the degradation of harmful organic dyes such as methylene blue and rhodamine B.

Another interesting example of cooperativity between supramolecular interactions and
self-assembly processes is the case of the β-octamolybdate isomer, [β-Mo8O26]4−. The octamolybdate
cluster was used initially to coordinate through its terminal oxygen binding sites to many first row
transition metal complexes. Examples include coordination to various complexes of first row transition
metals (Co, Ni, Cu and Zn), allowing the formation of 2D and 3D networks [53–55]. Another prominent
example of the coordination behaviour adopted by the [β-Mo8O26]4− anion is its ability to coordinate
silver (I) cations using its terminal oxygen ligands enabling it to behave as a bi-, tetra-, or hexadentate
ligand [56–58]. For example, work in this area by Cronin et al. revealed that reaction of the
molybdenum Lindqvist anion, [Mo6O19]2− with silver (I) cations in a variety of coordinating solvents
led to the isolation of various architectures involving, specifically the aggregation of (Ag{Mo8}Ag)
synthons [57]. The use of rigid, sterically bulky cations such as tetraphenylphosphonium ions in
DMSO solvent allowed isolation of the structure (Ph4P)2[Ag2Mo8O26((CH3)2SO)4], which is composed
of ‘monomers’ of this (Ag{Mo8}Ag) building-block [58]. In comparison, the use of varying chain-length
alkylammonium cations, i.e., tetrapropyl-, tetrabutyl-, tetrahexyl-, and tetraheptylammonium ions in
a range of solvents such as acetonitrile, DMSO and DMF, led to the isolation of a variety of architectures,
ranging from chains, to grids and 2D networks. The generation of these different POM architectures
was shown to be governed mainly by the steric requirements of the organic cations or coordinated
solvent molecules. Another important feature of these results was the identification of the unusual {Ag2}
dimers positioned between the {Mo8} cluster units, which are a result of the repeating (Ag{Mo8}Ag)
building-block units within these structures. This linking motif is uncommon in POM chemistry
and is a rare example of d10 (i.e., filled d-shell) bridging units which are held together by significant
argentophilic interactions, i.e., where the Ag-Ag distance is less than the sum of the van der Waals
radii (3.44 Å). Moreover, POM-based clusters also attracted the attention of research groups whose
work was focused on exploring their interactions in biological systems. The implemented approach
involved the functionalization of POMs with organic ligands which exhibit biological activity.
A family of organic compounds with these characteristics are biphosphonates, with general formula
H2O3PC(OH)(R)PO3H2, which have been studied as anti-bacterial and anti-cancer agents [59],
and various amino acids, like glycine and proline [60,61]. Initial exploration of the parameter space
(pH, concentration, counterions effect, ionic strength, etc.) yielded a large variety of compounds with
different properties which can interact with biological systems [62–67].

Utilization of a similar approach focused a lot of research efforts on exploiting the constructive
interactions of the POM-OFs constituents in an effort to introduce specific functionality to the
final material. For example, a lot of investigations have been dedicated into the reduction
of gas emission, as well as, development of materials for water purification. Very recently,
Ma et al. reported the synthesis of a 2D compound [Co2L0.5V4O12]·3DMF·5H2O (L = wheel-like
resorcin[4]arene ligand), which was used as heterogeneous catalyst and exhibited high efficiency
for the cycloaddition of CO2 with epoxides and for oxidative desulfurization of sulfides [68].
It was shown that the compound’s catalytic efficiency originates from the exposed vanadium sites
residing in the channels. Also, in 2016 Yang et al. synthesized a family of three compounds
[PMo12O40]@ [Cu6O(TZI)3(H2O)9]4·OH·31H2O (H3TZI = 5-tetrazolylisophthalic acid), [SiMo12O40]@
[Cu6O(TZI)3(H2O)9]4·32H2O, and [PW12O40]@[Cu6O(TZI)3(H2O)6]4·OH·31H2O under “one-pot”
solvothermal conditions, which involved the immobilization of Keggin clusters within the cavities
of the rht-MOF-1 [69]. The cooperative effects due to the co-existence of MOF and POM structures
proved to be beneficial for the adsorption of organic pollutants and their subsequent oxidation to
useful products.

Keggin-based species have been proven to be very useful building blocks for the construction
of POM-OF compounds. For example Dolbecq et al. [70] reported the preparation of four 1D
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and 2D networks. More specifically, (TBA)3{PMoV
8MoVI

4O36(OH)4Zn4}[C6H4(COO)2]2 is a 2D
compound which incorporates Zn-capped Keggin units connected via 1,3 benzenedicarboxylate
(isop) linkers and tetrabutylammonium (TBA) counter-cations occupying the space between the
planes. In the case of (TPA)3{PMoV

8MoVI
4O37(OH)3Zn4}[C6H3(COO)3](TPA[e(trim)]∞), the Zn-capped

Keggin units form 1D inorganic chains which are linked further via 1,3,5-benzenetricarboxylate
(trim) ligands into an overall 2D architecture. Alternatively, in (TBA){PMoV

8MoVI
4O40Zn4}(C7H4N2)2

(C7H5N2)2·12H2O(e(bim)4) compound the Zn capped Keggin units are connected to benzimidazole
(bim) ligands. Finally, the (TBA)(C10H10N4)2(HPO3)PMoV

8MoVI
4O40Zn4}2(C10H9N4)3(C10H8N4)

(e2(pazo)4) incorporates dimeric Zn capped Keggin units bridged by [HPO3]2− anions and
para-azobipyridine (pazo) ligands completing the coordination sphere. The group also showed
the use of these compounds as environmentally friendly reducing agents for the reduction of graphite
oxide (GO) to graphene (G) under mild conditions. The obtained materials’ (POM@G) large surface
area and noteworthy stability under various experimental conditions made them promising candidates
for numerous applications such as photo/electro catalysis, electrode materials and sensors.

Another set of representative examples are the all-inorganic POM-OF compounds
reported by Cronin et al. [71] where the connectivity between the POM-based building
blocks was served exclusively by transitions metals. The Mn-linked cubic framework,
K18Li6[Mn8(H2O)48P8W48O184]·108H2O, incorporates 8-connected {P8W48} units, bridged by MnII

centres, located to the external surfaces of the rings (Figure 10). The cubic sub-units formed by the
perpendicular orientation of the {P8W48} rings define an infinite array nano-sized molecular cubes,
enclosing roughly spherical cavities of ca. 7.2 nm3. The authors demonstrated the accessibility of
these cavities by divalent transition metals. In a similar manner, the same group reported shortly after
a whole family of POM-OFs based on the connectivity of {P8W48} building blocks with other transitional
metals (e.g., Co2+). The authors showed that the conformational flexibility of the crystalline framework,
which can undergo eight different crystal-to-crystal transformations without compromising either its
structural stability or its crystallinity. Finally, it was shown that observed adsorption properties are
directly associated with the conformational flexibility of the material.
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The {P8W48} units are connected through MnII centres to form a face-directed cube, with internal cavity
volume of ca. 7.2 nm3. The repeated cubic units form an infinite 3D lattice. (Colour scheme: {P8W48},
orange wired representation; MnII, blue spheres).
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Another sub-category of the hybrid POM-MOF-based materials is the
polyoxometalate-lanthanide organic frameworks (POM-LOF), which have attracted the
interest of various research groups due to their modular optical (e.g., luminescence)
and magnetic properties originating from the interactions with 4f electrons of LnIII

cations. Very recently, the compound [Ce4(BINDI)2(DMA)16]·[SiW12O40]·3DMA (BINDI =
N,N′-bis(5-isophthalate)-1,4,5,8-naphthalenediimide, DMA = N,N-dimethylacetamide) was reported,
which is the first example of a visible-light-responsive photochromic POM-LOF hybrid material.
This compound exhibits unusual four-fold interpenetration of 3D cationic frameworks that further
encapsulate non-coordinating Keggin [SiW12O40]4− species (Figure 11) [72]. The interactions between
the π-acidic naphthalenediimide moieties and the anionic POM clusters played a key role in the
self-organization of the components, which led to the formation of the final product.
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Figure 11. Keggin anions [SiW12O40]4− immobilized via anion–π interactions developed between
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Adapted from Dalton Trans. 2017, 46, 4898–4901. Copyright (2017) Royal Society of Chemistry.

3. Metal–Organic Coordination Frameworks

The family of porous solids is another category of self-assembled materials which exhibit interesting
properties and wide range of applications. Their functionality is based mainly on their chemical
and physical properties, such as porosity, surface area and thermal stability. A sub-category of solid
materials, which developed dramatically during the last decades, is the metal–organic frameworks
(MOFs). MOFs are porous crystalline materials, which are constructed by metal ion centres or clusters
and organic linkers through coordination bonding. The term “metal–organic framework” was introduced
for the first time in 1995 from Yaghi [73]. The structure and the properties of MOFs depends on the choice
of metal centres, as well as the metal’s coordination number, which consequently influences the shape
and the pore size. Also, the organic ligands play an equally important role due to their chemical reactivity,
physical properties, geometry, and the non-covalent interactions that can develop [74,75].

The implementation of some design approaches can lead to construction of functionalized
structures with a wide range of applications. The two common methods utilized for the
functionalization of MOFs are the pre-synthetic modification, where the components are
pre-functionalized and form the desired MOF-based architecture, and the post-synthetic modification,
where the modification takes place after the preparation of the MOF-based progenitor. An example
of pre-synthetic modification is the synthesis of the rht-type MOF structure, [Co24(TPBTM)8(H2O)24],
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where the TPBTM is an amide functionalized trigonal carboxylate linker [76]. This compound
exhibited greater affinity for CO2 molecules in comparison with the compound [Co24(btei)8(H2O)24],
due to dipole-quadrupole interactions and hydrogen bonds developed between the acylamide groups
and the CO2 molecules. On the other hand, Kitagawa et al. reported an elegant example of
post-synthetic modification via coordinative surface ligand exchange [57] of two Zn-based MOFs:
[Zn2(1,4-bdc)2(dabco)]n and [Zn2(1,4-ndc)2(dabco)]n (Figure 12) [77].Inorganics 2018, 6, x FOR PEER REVIEW  13 of 26 
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MOF materials can be synthesized with various methods, and each one offers its own
advantages. The synthetic procedures typically involve the following: (a) solvothermal synthesis:
the most commonly used method, in which the reagents are heated in solution in closed
vessels under autogenous pressure; (b) slow evaporation method: this does not need a supply
of additional energy, but requires more time than other techniques, and is rarely used due
to solubility issues; (c) electrochemical synthesis: the synthesis is carried out under mild
reaction conditions, where real-time control/modification of the reaction parameters is possible;
(d) mechanochemical synthesis: a solvent-free, economical chemical reaction driven by mechanical
force; (e) microwave-assisted synthesis: rapid method for MOF synthesis, and it has been used
to produce nanosized metal oxides; and (f) sonochemical synthesis: implementation of intensive
ultrasonic radiation that triggers chemical and physical changes, which leads to the reduction of
crystallization times. As a new class of porous solid materials, MOFs are attractive candidates for
a variety of industrial applications due to their physical and chemical properties such as high porosity,
high surface area, and modular surface. Some representative applications are summarized below:

3.1. Catalysis and Gas Storage

Catalysis is one of the most studied area of applications for MOF-based materials [78–80].
The porous nature of MOF structures allows the efficient diffusion of the substrates towards the catalytic
sites (Figure 13). Taking into consideration the fact that the catalytic sites, as well as the interactions
within the pores, can be tuned by employing rational structure design approaches, these are ideal
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candidates for catalytic applications. The compound MIL-101(Cr) is used in catalytic reactions due to
the presence of free Lewis acid sites when water molecules are removed (Figure 14). Another important
application field for MOF-based materials is the storage of small gas molecules [81–83]. Also, in this
case, utilizing design principles is crucial for tailoring the structure for specific application such as
engineering of the pores’ size and the chemical environment within the pores in order to optimize the
affinity of the material towards specific substrates [84].Inorganics 2018, 6, x FOR PEER REVIEW  14 of 26 
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Figure 14. The coordinated water molecules are removed from MIL-101(Cr) generating free coordination
sites (highlighted with black arrows) during the activation process. Subsequently, the activated MIL-101(Cr)
catalyses the cyanosilylation of benzaldehyde. (Colour scheme: Fe, lime green; O, red).

3.2. Drug Delivery Systems (DDS)

The last decade, in an effort to exploit the inherent properties of MOFs, such as porosity,
modular surface chemistry, large surface areas, and tunable pore sizes, various research groups
explored the potential uses of MOF-based materials as drug delivery systems [85,86]. The low chemical
and aqueous stability of some MOF structures render them highly promising candidates for drug
delivery applications, taking into consideration that MOF structural units need to be biodegraded after
the drug release.
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Very recently, Forgan et al. reported the synthesis and characterization of a Zr-based family of
MOFs. This family of MOFs are made of biocompatible components which can penetrate the cells’
boundaries, and therefore can be used as potential materials for DDS. In this case, The MOF structures
have been loaded with fluorescent molecules (e.g., calcein), and demonstrated the use of mechanical
amorphisation processes for the controlled delivery of the guest molecules (Figure 15). The research
results showed that the fine balance between the material’s pores and the guest molecules is crucial for
achieving effective release of the guest molecules [87].Inorganics 2018, 6, x FOR PEER REVIEW  15 of 26 
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4. Supramolecular Interactions in LDH Materials

Layered double hydroxides (LDHs) are a class of two-dimensional clays, consisting of positively
charged brucite-like layers and interlayer compensating anions. Their composition is described by
the general formula [MII

1−xMIII
x(OH)2]x+[Am−

x/m]·nH2O (Figure 16), where MII, MIII are divalent
(e.g., Mn, Zn) and trivalent (e.g., Al, Fe) metal ions, while Am− represents interlayer anions (e.g., SO4

2−,
CO3

2−). The formation of LDH-based materials is driven by weak interlayer interactions, and as
a consequence, they offer an excellent opportunity for the development of composite compounds by
exchanging the anionic and solvent content of the interlayer cavities with the desirable components.
For example, exploitation of supramolecular interactions between the LDH layers and POM clusters,
have given a wide range of materials with interesting catalytic properties tailored for applications in
epoxidations, N-oxidations and desulfurisations [88–92].
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As described earlier, MOFs are ideal candidates for the development of membrane materials
for gas separation, due to their pore size flexibility, and their sorption properties [93,94]. However,
the limited progress observed in the field of MOF-based membranes is mainly due to the weak
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interfacial bonding between MOF-based membranes and chemical inert substrates, such as α-Al2O3.
An efficient means employed for the immobilization of MOF clusters on substrates, is the use of
an LDH network. Recently, a novel seeding method for the preparation of ZIF-8 membrane on the
porous substrate α-Al2O3, was reported [95]. The research group demonstrated the self-organization of
a network made of crystallographically vertically aligned LDH walls, which prevented the detachment
of ZIF-8 seeds. The prepared ZIF-8 membrane exhibited H2 permeance and high H2 selectivity.

Moreover, Han et al. reported the construction of LDH@ZIF-8 composite, by in situ growth
of ZIF-8 on Zn–Al–LDH, without adding any zinc precursor (Figure 17). The resulting material
exhibits CO2 adsorption capacity of 1 mmol·g−1 at room temperature and 1 bar, which is higher than
Zn–Al–LDH or ZIF-8 [96] and is the result of cooperative effects developed between the LDH and
ZIF-8 components of the assembled material.
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Copyright (2016) Royal Society of Chemistry.

5. Transition Metal Coordination Cages

Supramolecular coordination complexes (CCS) are finite supramolecular compounds formed
by the self-assembly of metal centres in the presence of various ligands with appropriate binding
sites and geometrical features. The formation of this family of compounds is driven by self-assembly
processes, during which the thermodynamically favoured product is synthesized. The constituents of
various coordination abilities and geometries that co-exist in the reaction mixture have the tendency
to undergo a self-sorting process via a network of dynamic equilibria which appears to “correct”
mis-alignments of building blocks or non-efficient types of coordination, ultimately promoting the
formation of the most stable species in solution. In 1990, Fujita et al. reported the rational synthesis of
a tetragonal metal complex, which consists of four linear ligands (4,4′-bipyridine) held together by
four [enPd(II)] units (Figure 18) [97]. The palladium-based building block exhibits a 90◦ coordination
angle, which ultimately drives the formation of the specific compound. Thus, the structural features
and coordination angles of the components present in the reaction mixture are crucial for directing the
assembly process towards the formation of a wide range of compounds, such as cages and capsules [98].
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Both the metal’s coordination angle and the ligand’s binding site angle play a key role in the
formation of new structures with different geometries. Shortly after, the same group reported the
synthesis of a M24L48 rhombicuboctahedron, by simply controlling the angle between the binding
sites of the dipyridyl donor ligand [99]. The use of ditopic building blocks led to the formation
of 2D convex polygons, while the combination of ditopic and tritopic building blocks led to the
formation of 3D polygons (Figures 19 and 20) [100]. Also, the presence of capping ligands is
very important for the implementation of design elements and synthesis of diverse compounds,
since they prevent the formation of infinite arrays and 1D coordination chains, while they introduce
the desirable directionality.
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Figure 20. Formation of 3D architectures constructed by self-assembly of ditopic and tritopic building
blocks. Adapted from Chem. Rev. 2011, 111, 6810–6918. Copyright (2011) Royal Society of Chemistry.

Supramolecular coordination complexes have attracted the attention of various research [101,102]
groups due to their applications in catalysis [103], recognition and separation [104], stabilization of
sensitive species [105], etc. The ability of incorporating different functional groups to coordination
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cages during the self-assembly process renders the final compounds excellent candidates for rational
design of supramolecular nanoreactors [106]. Very often, the guest molecules are encapsulated
centrally due to their solvophobicity and size complementarity between guests and hosts. Occasionally,
the nanocages are able to accommodate more than one guest depending on their size of the host
cage and the guest molecule. Nitschke et al. reported the synthesis of a new class of supramolecular
MII

6L4 pseudo-octahedra which can interact with guest molecules both internally and externally [107].
Moreover, the group demonstrated the importance of peripheral guests which template the formation
of the CuII

6L4 structure; they showed that the cage would be able to form based only on the
self-assembly process or central template considerations.

The environment inside the cavity is very different from the bulk solution, and this is the main
reason that the encapsulated molecules demonstrate different chemical behaviour. Under appropriate
conditions, unique reactions can be carried out within the cage which are not generally favoured in
the reaction medium; this is extremely important in several applications, including catalysis [108].
Fujita et al. investigated the encapsulation of dinuclear compounds which exhibit weak metal–metal
bonds utilizing a cage-type nanoreactor (Figure 21). In this case, the ruthenium complex,
[(η-5-indenyl)Ru(CO)2]2, adopts a CO-bridged cis configuration and an unexpected enhancement
of its photostability is observed [109]. Furthermore, the confined space of the nanocage prevents
the dissociation of the metal-metal bond, which is generally favoured out of the cage. It has been
reported that the compound [(Me4Cp)Ru(CO)2]2 (Cp = cyclopentadienyl) undergoes photosubstitution
of a CO ligand by an alkyne without dissociation of the Ru–Ru bond, and a Ru–alkyne π–complex
is formed [110].
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The solubility and host/guest capabilities of supramolecular coordination systems renders them
highly promising candidates for biomedical applications. Stang et al. synthesised eight tetranuclear
rectangles employing a coordination self-assembly approach between arene–Ru-based acceptors and
3-bipyridyl donors. Interestingly, the research group investigated the in vitro cytotoxicities relative to
cis-platin and doxorubicin. Four of these compounds exhibited notable activity (Figure 22) [111].

Finally, the CCSs nano-structures can also be used as selective molecular sensors. Chi and
co-workers reported the synthesis of two heterometallic self-assembled molecular squares and studied
their potential functionality as sensors for the selective detection of picric acid [112] (Figure 23).
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It is worth noting at this point that the examples we discussed above do not constitute
an exhaustive list of available families of clusters. There are numerous other interesting metal
coordination cages with remarkable structural features and properties [113–117]. Any effort to discuss
every available family of clusters, their general features and functionality would have been fruitless
and goes beyond the scope of the present article.Inorganics 2018, 6, x FOR PEER REVIEW  19 of 26 
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Figure 23. Heterometallic self-assembled square-shaped molecular sensor. (Colour scheme: Pd/Pt,
teal; Fe, dark yellow; C, grey; N, blue; O, red; S, yellow; P, orange; F, bright green). Adapted from
Chem. Rev. 2012, 41, 3046–3052. Copyright (2011) Royal Society of Chemistry.

6. Conclusions

In summary, supramolecular non-covalent interactions and molecular self-assembly has proven to
be powerful tools in synthetic chemistry, which have been employed for the construction of compounds
made by primary and secondary (cluster-based) building blocks. Both processes are driven by specific
physical or chemical parameters, such as recognition processes, templating effects and chemical
reactivity. Efforts to understand and ultimately control such dynamic behaviour are challenging,
but also exciting, since the embedded error correction mechanism offered by the reversibility of the
metal–ligand bonding, in combination with the geometrically defined metal coordination environment,
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renders the self-assembly processes a particularly fruitful approach for the construction of complex
structures. Incremental understanding and control over the covalent and non-covalent interactions,
and their subsequent utilization as synthetic tools in chemical systems, led to the development of
new families of compounds with impressive functionalities. As discussed above, polyoxometalate,
metal organic frameworks and supramolecular coordination compounds are all families of compounds
with unique physical and chemical properties whose formation is based on the cooperative effect
of self-assembly and supramolecular interactions. The implementation of design principles using
appropriate building blocks led to the emergence of functionalities based on cooperative effects
developed between the self-assembled constituents. The properties that these materials exhibit
range from gas storage, drug delivery, selective sensors and membranes to catalysis, stabilization of
short-lived species and chemical conversions to useful products. Moreover, the coupling of these
processes between the solution and solid-state offers a unique opportunity for the future development
of materials with desirable functionality. We are confident that the observed exponential growth
of well-defined architectures in the area of self-assembled inorganic and metal–organic systems in
combination of the deeper understanding of the underlying processes, will be followed by an explosion
in functionalities; taking advantage of design principles for the construction of building blocks with
appropriate geometry, physical and chemical behaviour, will allow us to engineer highly sophisticated
chemical systems with unprecedented properties.
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