42 research outputs found

    Faceted nanomaterial synthesis, characterizations and applications in reactive electrochemical membrane filtration

    Get PDF
    Facet engineering of nanomaterials, especially metals and metal oxides has become an important strategy for tuning catalytic properties and functions from heterogeneous catalysis to electrochemical catalysis, photocatalysis, biomedicine, fuel cells, and gas sensors. The catalytic properties are highly related to the surface electronic structures, surface electron transport characteristics, and active center structures of catalysts, which can be tailored by surface facet control. The aim of this doctoral dissertation research is to study the facet-dependent properties of metal or metal oxide nanoparticles using multiple advanced characterization techniques. Specifically, the novel atomic force microscope-scanning electrochemical microscope (AFM-SECM) and density functional theory (DFT) calculations were both applied to both experimentally and theoretically investigate facet dependent electrochemical properties, molecular adsorption, and dissolution properties of cuprous oxide and silver nanoparticles. To promote the facet engineered nanomaterials for environmental engineering apparitions, our research has evaluated the performances of electrochemically reactive membranes that were prepared with novel 2D nanomaterials with surface functioal modifications to enable electrochemical advanced oxidation processes (EAOPs) in membrane filtration process. Our results demonstrated many advantages such as tunable reactivity, tailored surface reactions, antifouling features, and feasibility of large-scale continuous operations. Specifically, this dissertation will introduce our electrochemical membrane synthesis, reactivity, aging, byproducts formation and electrochemical adsorption and desorption, oxidation of pollutants such as two typical per-and poly-fluoroalkyl substances (PFAS), perfluorooctanoic Acid (PFOA) and perfluorobutanoic acid (PFBA)

    IMPACTS Results Summary for CY 2010

    Full text link

    Fabrication of Carbon and Related Materials/Metal Hybrids and Composites

    Get PDF
    This Special Issue on “Fabrication of Carbon and related materials/ Metal Hybrids and Composites” presents the importance of the development of new composite and hybrid materials in different fields. It consists of 17 articles contributed by authors from different countries all over the world. The articles can be categorized into four classes. The first class of includes articles focusing on the synthesis of carbon fibers, carbon nanotubes, and graphene hybrid and composite materials. The results include the developments of the methodology and know-how of the synthesis and functionalization of the graphene surface of fibers and nanotubes and their effects on binding with the metal matrix. The second class focuses on the synthesis of new polymeric materials based on pitch/polyethylene composites and their electrical and mechanical properties, including the correlations with its microstructures. Additionally, the second class presents the results of articles, including the synthesis of new biocompatible and eco-friendly metal oxide/polymer materials with antibacterial and antimicrobial activities. The third class includes articles focused on the applications of ceramic metal oxides, such as silica and clays in the development of solar cells and in the fabrications of membranes of water treatments and desalinations. The last part of this Special Issue presents results of the articles focused on high-entropy alloys and metal matrix composites and their weldability

    Membranes for Water and Wastewater Treatment

    Get PDF
    Water is a vital element for life and the environment. Water pollution has been documented as a contributor to a wide range of health problems. In recent years, the water quality levels have suffered great deterioration because of rapid social and economic development and because it is used to “dump” a wide range of pollutants.This book entitled “Membranes for Water and Wastewater Treatment” contains featured research papers dealing with recent developments and advances in all aspects related to membranes for water and wastewater treatment: membrane processes, combined processes (including one membrane step), modified membranes, new materials, and the possibility to reduce fouling and to improve the efficiency of enhanced processes. The papers compiled in this Special Issue can be read as a response to the current needs and challenges in membrane development for water and wastewater treatment.Half of the research articles correspond to concrete and practical applications of the use of membrane processes in different fields of the industry, with the aim of treating and conditioning water and wastewater. The studies reveal the treatment of industrial streams, mining, recycled paper industry, olive mill, urban wastewater, etc. Another important percentage of studies are related to membrane modification processes, with the aim of obtaining new materials with better performance in the separation processes, thus describing the use of membranes modified with chitosan, nanoparticles, and other organic compounds. This field also includes studies related to fouling and its modeling

    New York State Energy Research and Development Authority. Research projects` update project status as of March 31, 1997

    Full text link

    Advances in Plasma Processes for Polymers

    Get PDF
    Polymerized nanoparticles and nanofibers can be prepared using various processes, such as chemical synthesis, the electrochemical method, electrospinning, ultrasonic irradiation, hard and soft templates, seeding polymerization, interfacial polymerization, and plasma polymerization. Among these processes, plasma polymerization and aerosol-through-plasma (A-T-P) processes have versatile advantages, especially due to them being “dry", for the deposition of plasma polymer films and carbon-based materials with functional properties suitable for a wide range of applications, such as electronic and optical devices, protective coatings, and biomedical materials. Furthermore, it is well known that plasma polymers are highly cross-linked, pinhole free, branched, insoluble, and adhere well to most substrates. In order to synthesize the polymer films using the plasma processes, therefore, it is very important to increase the density and electron temperature of plasma during plasma polymerization

    Fossil Energy Program Annual Progress Report for the Period April 1, 2000 through March 31, 2001

    Full text link

    Geosciences and Engineering 8.12.

    Get PDF
    corecore