6,411 research outputs found

    Open sets satisfying systems of congruences

    Full text link
    A famous result of Hausdorff states that a sphere with countably many points removed can be partitioned into three pieces A,B,C such that A is congruent to B (i.e., there is an isometry of the sphere which sends A to B), B is congruent to C, and A is congruent to (B union C); this result was the precursor of the Banach-Tarski paradox. Later, R. Robinson characterized the systems of congruences like this which could be realized by partitions of the (entire) sphere with rotations witnessing the congruences. The pieces involved were nonmeasurable. In the present paper, we consider the problem of which systems of congruences can be satisfied using open subsets of the sphere (or related spaces); of course, these open sets cannot form a partition of the sphere, but they can be required to cover "most of" the sphere in the sense that their union is dense. Various versions of the problem arise, depending on whether one uses all isometries of the sphere or restricts oneself to a free group of rotations (the latter version generalizes to many other suitable spaces), or whether one omits the requirement that the open sets have dense union, and so on. While some cases of these problems are solved by simple geometrical dissections, others involve complicated iterative constructions and/or results from the theory of free groups. Many interesting questions remain open.Comment: 44 page

    Logical and Algebraic Characterizations of Rational Transductions

    Get PDF
    Rational word languages can be defined by several equivalent means: finite state automata, rational expressions, finite congruences, or monadic second-order (MSO) logic. The robust subclass of aperiodic languages is defined by: counter-free automata, star-free expressions, aperiodic (finite) congruences, or first-order (FO) logic. In particular, their algebraic characterization by aperiodic congruences allows to decide whether a regular language is aperiodic. We lift this decidability result to rational transductions, i.e., word-to-word functions defined by finite state transducers. In this context, logical and algebraic characterizations have also been proposed. Our main result is that one can decide if a rational transduction (given as a transducer) is in a given decidable congruence class. We also establish a transfer result from logic-algebra equivalences over languages to equivalences over transductions. As a consequence, it is decidable if a rational transduction is first-order definable, and we show that this problem is PSPACE-complete

    Weak Markovian Bisimulation Congruences and Exact CTMC-Level Aggregations for Concurrent Processes

    Full text link
    We have recently defined a weak Markovian bisimulation equivalence in an integrated-time setting, which reduces sequences of exponentially timed internal actions to individual exponentially timed internal actions having the same average duration and execution probability as the corresponding sequences. This weak Markovian bisimulation equivalence is a congruence for sequential processes with abstraction and turns out to induce an exact CTMC-level aggregation at steady state for all the considered processes. However, it is not a congruence with respect to parallel composition. In this paper, we show how to generalize the equivalence in a way that a reasonable tradeoff among abstraction, compositionality, and exactness is achieved for concurrent processes. We will see that, by enhancing the abstraction capability in the presence of concurrent computations, it is possible to retrieve the congruence property with respect to parallel composition, with the resulting CTMC-level aggregation being exact at steady state only for a certain subset of the considered processes.Comment: In Proceedings QAPL 2012, arXiv:1207.055

    Measurable realizations of abstract systems of congruences

    Get PDF
    An abstract system of congruences describes a way of partitioning a space into finitely many pieces satisfying certain congruence relations. Examples of abstract systems of congruences include paradoxical decompositions and nn-divisibility of actions. We consider the general question of when there are realizations of abstract systems of congruences satisfying various measurability constraints. We completely characterize which abstract systems of congruences can be realized by nonmeager Baire measurable pieces of the sphere under the action of rotations on the 22-sphere. This answers a question of Wagon. We also construct Borel realizations of abstract systems of congruences for the action of PSL2(Z)\mathsf{PSL}_2(\mathbb{Z}) on P1(R)\mathsf{P}^1(\mathbb{R}). The combinatorial underpinnings of our proof are certain types of decomposition of Borel graphs into paths. We also use these decompositions to obtain some results about measurable unfriendly colorings.Comment: minor correction
    • …
    corecore