103 research outputs found

    Initial investigations into the MOS interface of freestanding 3C-SiC layers for device applications

    Get PDF
    This letter reports on initial investigation results on the material quality and device suitability of a homo-epitaxial 3C-SiC growth process. Atomic force microscopy surface investigations revealed root-mean square surface roughness levels of 163.21 nm, which was shown to be caused by pits (35 ÎŒm width and 450 nm depth) with a density of 1.09 × 105 cm−2 which had formed during material growth. On wider scan areas, the formation of these were seen to be caused by step bunching, revealing the need for further epitaxial process improvement. X-ray diffraction showed good average crystalline qualities with a full width of half-maximum of 160 arcseconds for the 3C-SiC (002) being lower than for the 3C-on-Si material (210 arcseconds). The analysis of C–V curves then revealed similar interface-trapped charge levels for freestanding 3C-SiC, 3C-SiC on Si and 4H-SiC, with forming gas post-deposition annealed freestanding 3C-SiC devices showing DIT levels of 3.3 × 1011 cm−2 eV−1 at EC−ET = 0.2 eV. The homo-epitaxially grown 3C-SiC material's suitability for MOS applications could also be confirmed by leakage current measurements

    Development of Schottky and MOS interfaces for SiC power devices

    Get PDF
    The very nature of the wide bandgap semiconductor silicon carbide (SiC), namely its high critical electric field, thermal conductivity and stable native oxide, silicon dioxide (SiO2), has enabled the design, fabrication and market penetration of a new generation of power devices, Schottky barrier diodes (SBDs) and metal-oxide-semiconductor fieldeffect transistors (MOSFETs), with blocking voltages from 600-1700V. Despite the successful commercial realisation of these devices, the surface of SiC and the interfaces it forms with metals (Schottky interface) and insulators (MOS interface), are still the source of reliability problems such as premature breakdown and decreased lifetime of gate oxides on SiC. The focus of this thesis lies on the exploration of passivation approaches to the Schottky interface as well as the investigation of the quality of deposited gate oxides. Firstly, an electrical and physical analysis of the impact of a proposed phosphorous pentoxide (P2O5) treatment on planar and optimised 3.3 kV JBS diodes reveals a reduction of Schottky barrier height as well as leakage current, offering a possible path to overcome the basic trade-off between on-state and off-state performance of a diode. The second part of the thesis focuses on atomic layer deposition (ALD) – deposited SiO2 layers, where a post-deposition annealing (PDA) study reveals the performance improvement when a PDA in forming gas ambient at 1100°C is carried out. This process was then successfully transferred and validated on freestanding 3C-SiC material, which successfully demonstrated the general suitability of this material for power device applications

    Feature Papers in Electronic Materials Section

    Get PDF
    This book entitled "Feature Papers in Electronic Materials Section" is a collection of selected papers recently published on the journal Materials, focusing on the latest advances in electronic materials and devices in different fields (e.g., power- and high-frequency electronics, optoelectronic devices, detectors, etc.). In the first part of the book, many articles are dedicated to wide band gap semiconductors (e.g., SiC, GaN, Ga2O3, diamond), focusing on the current relevant materials and devices technology issues. The second part of the book is a miscellaneous of other electronics materials for various applications, including two-dimensional materials for optoelectronic and high-frequency devices. Finally, some recent advances in materials and flexible sensors for bioelectronics and medical applications are presented at the end of the book

    Physics and Technology of Silicon Carbide Devices

    Get PDF
    Recently, some SiC power devices such as Schottky-barrier diodes (SBDs), metal-oxide-semiconductor field-effect-transistors (MOSFETs), junction FETs (JFETs), and their integrated modules have come onto the market. However, to stably supply them and reduce their cost, further improvements for material characterizations and those for device processing are still necessary. This book abundantly describes recent technologies on manufacturing, processing, characterization, modeling, and so on for SiC devices. In particular, for explanation of technologies, I was always careful to argue physics underlying the technologies as much as possible. If this book could be a little helpful to progress of SiC devices, it will be my unexpected happiness

    Current Titles

    Full text link

    Vertical Gallium Nitride Power Devices: Fabrication and Characterisation

    Get PDF
    Efficient power conversion is essential to face the continuously increasing energy consumption of our society. GaN based vertical power field effect transistors provide excellent performance figures for power-conversion switches, due to their capability of handling high voltages and current densities with very low area consumption. This work focuses on a vertical trench gate metal oxide semiconductor field effect transistor (MOSFET) with conceptional advantages in a device fabrication preceded GaN epitaxy and enhancement mode characteristics. The functional layer stack comprises from the bottom an n+/n- drift/p body/n+ source GaN layer sequence. Special attention is paid to the Mg doping of the p-GaN body layer, which is a complex topic by itself. Hydrogen passivation of magnesium plays an essential role, since only the active (hydrogen-free) Mg concentration determines the threshold voltage of the MOSFET and the blocking capability of the body diode. Fabrication specific challenges of the concept are related to the complex integration, formation of ohmic contacts to the functional layers, the specific implementation and processing scheme of the gate trench module and the lateral edge termination. The maximum electric field, which was achieved in the pn- junction of the body diode of the MOSFET is estimated to be around 2.1 MV/cm. From double-sweep transfer measurements with relatively small hysteresis, steep subthreshold slope and a threshold voltage of 3 - 4 V a reasonably good Al2O3/GaN interface quality is indicated. In the conductive state a channel mobility of around 80 - 100 cm2/Vs is estimated. This obtained value is comparable to device with additional overgrowth of the channel. Further enhancement of the OFF-state and ON-state characteristics is expected for optimization of the device termination and the high-k/GaN interface of the vertical trench gate, respectively. From the obtained results and dependencies key figures of an area efficient and competitive device design with thick drift layer is extrapolated. Finally, an outlook is given and advancement possibilities as well as technological limits are discussed.:1 Motivation and boundary conditions 1.1 A comparison of competitive semiconductor materials 1.2 Vertical GaN device concepts 1.3 Target application for power switches 2 The vertical GaN MOSFET concept 2.1 Incomplete ionization of dopants 2.2 The pseudo-vertical approach 2.3 Considerations for the device OFF-state 2.3.1 The pn-junction in reverse operation 2.3.2 The gate trench MIS-structure in OFF-state 2.3.3 Dimensional constraints and field plates 2.4 Static ON-state and switching considerations 2.4.1 The pn-junction in forward operation 2.4.2 Resistance contributions 2.4.3 Device model and channel mobility 2.4.4 Threshold voltage and subthreshold slope 2.4.5 Interface and dielectric trap states in wide band semiconductors 2.4.6 The body bias effect 3 Fabrication and characterisation 3.1 Growth methods for GaN substrates and layers 3.2 Substrates and the desired starting material 3.2.1 Physical and micro-structural characterisation 3.2.2 Dislocations and impurities 3.3 Pseudo- and true-vertical MOSFET fabrication 3.3.1 Processing routes 3.3.2 Inductively-coupled plasma etching 3.3.3 Process flow modification 3.4 Electrical characterisation, structures and process control 3.4.1 Current voltage characterisation 3.4.2 C(V) measurements and charge carrier profiling 3.4.3 Cooperative characterisation structures 4 Properties of the functional layers 4.1 Morphology of the MOVPE grown layers 4.2 Hydrogen out-diffusion treatment 4.3 Morphology of the n+-source layer grown by MBE 4.4 N-type doping of the functional layers 4.5 P-type GaN by magnesium doping 4.6 Structural properties after the etching and gate module formation 4.7 Electrical layer characterization 4.7.1 Gate dielectric and interface evaluation 5 Pseudo- and true vertical device operation 5.1 Influences of the metal-line sheet resistance 5.2 Formation and characterisation of ohmic contacts 5.2.1 Ohmic contacts to n-type GaN 5.2.2 Ohmic contacts to p-GaN 5.3 The pn- body diode 5.4 MOSFET operation 5.4.1 ON-state and turn-ON operation 5.4.2 The body bias effect on the threshold voltage 5.4.3 Device OFF-state 6 Summary and conclusion 6.1 Device performance 6.2 Current limits of the vertical device technology 6.3 Possibilities for advancements Bibliography A Appendix A.1 Deduction: Forward diffusion current of the pn-diode A.2 Deduction: Operation regions in the EKV model Figures Tables Abbreviations Symbols Postamble and Acknowledgemen

    Evaluation of 4h-Sic Photoconductive Switches for Pulsed Power Applications Based on Numerical Simulations

    Get PDF
    Since the early studies by Auston, photoconductive semiconductor switches (PCSSs) have been investigated intensively for many applications owing to their unique advantages over conventional gas and mechanical switches. These advantages include high speeds, fast rise times, optical isolation, compact geometry, and negligible jitter. Another important requirement is the ability to operate at high repetition rates with long device lifetimes (i.e., good reliability without degradation). Photoconductive semiconductor switches (PCSSs) are low-jitter compact alternatives to traditional gas switches in pulsed power systems. The physical properties of Silicon Carbide (SiC), such as a large bandgap (3.1-3.35 eV), high avalanche breakdown field (~3 MV/cm), and large thermal conductivity (4-5 W/cm-K) with superior radiation hardness and resistance to chemical attack, make SiC an attractive candidate for high voltage, high temperature, and high power device applications. A model-based analysis of the steady-state, current-voltage response of semi-insulating 4H-SiC was carried out to probe the internal mechanisms, focusing on electric field driven effects. Relevant physical processes, such as multiple defects, repulsive potential barriers to electron trapping, band-to-trap impact ionization, and field-dependent detrapping, were comprehensively included. Results of our model matched the available experimental data fairly well over orders of magnitude variation in the current density. A number of important parameters were also extracted in the process through comparisons with available data. Finally, based on our analysis, the possible presence of holes in the samples could be discounted up to applied fields as high as 275 kV/cm. In addition, calculations of electric field distributions in a SiC photoconductive semiconductor switch structure with metal contacts employing contact extensions on a high-k HfO2 dielectric were carried out, with the goal of assessing reductions in the peak electric fields. For completeness, analysis of thermal heating in a lateral PCSS structure with such modified geometries after photoexcitation was also included. The simulation results of the electric field distribution show that peak electric fields, and hence the potential for device failure, can be mitigated by these strategies. A combination of the two approaches was shown to produce up to a ~67% reduction in peak fields. The reduced values were well below the threshold for breakdown in SiC material using biasing close to experimental reports. The field mitigation was shown to depend on the length of the metal overhang. Further, the calculations show that, upon field mitigation, the internal temperature rise would also be controlled. A maximum value of 980 K was obtained here for an 8 ns electrical pulse at a 20 kV external bias, which is well below the limits for generating local stress or cracks or defects

    Graphene and beyond: development of new two-dimensional materials

    Get PDF
    During the three years of my PhD project, I explored part of the world of two-dimensional materials. My activity has been focused on the growth and analysis of two-dimensional materials by means of Surface Science techniques. For the growth both chemical methods, such as decomposition of gaseous precursors, as well as physical methods, such as evaporation of metals under ultra-high vacuum conditions, were used. The main method for studying the properties of these materials was photoemission spectroscopy from core levels and valence band. The materials were mostly grown and analysed directly in-situ, avoiding air exposure, which is known to alter their properties. Taking the cue from the results on single materials, I further widened my investigation toward complex heterostructures, i.e. artificial architectures of two-dimensional materials. Systems stemming from different combinations among graphene, hexagonal boron nitride and two-dimensional chalcogenides were produced and investigated with the aim to unravel the structure-activity relationships in heterostructures. The thesis is divided into four main chapters. The first is an introduction to the world of two-dimensional materials and summarized the main themes and the general structure of the thesis. The second chapter is dedicated to the growth and study of graphene, which is the archetype of this class of materials. After an introduction on its electrical properties and on its growth on conventional metal single crystals, the chapter is divided into four sections that cover specific issues. Paragraphs 2.1.1 and 2.1.2 examine the properties of graphene and nitrogen doped graphene in contact with ultra-thin layers of iron. The section 2.2 studies the reaction of water with graphene grown on nickel single crystal, for the production of hydrogen. The paragraph 2.3 describes the growth of graphene on an unconventional substrate: platinum nickel alloy (Pt3Ni). The third chapter is devoted to the study of other two-dimensional materials firstly introducing the studied materials: hexagonal boron nitride, transition metals dichalcogenides, other layered chalcogenides and heterostructures. Afterward, this chapter continues with three specific sections: paragraphs 3.1.1 and 3.1.2 are dedicated to two innovative methods for preparing heterostructures under ultra-high vacuum conditions. The section 3.1.1 presents a new strategy to synthesize monolayer in-plane heterostructure composed by graphene and hexagonal boron nitride, the 3.1.2 discusses a versatile route to create vertically stacked heterostructures of various two-dimensional materials. The last paragraph, 3.2, reports a detailed investigation of the electronic and chemical properties of a bulk layered chalcogenide, indium selenide. The fourth chapter summarizes the main conclusions of the work

    Elastic strain engineering for unprecedented materials properties

    Get PDF
    “Smaller is stronger.” Nanostructured materials such as thin films, nanowires, nanoparticles, bulk nanocomposites, and atomic sheets can withstand non-hydrostatic (e.g., tensile or shear) stresses up to a significant fraction of their ideal strength without inelastic relaxation by plasticity or fracture. Large elastic strains, up to ∌10%, can be generated by epitaxy or by external loading on small-volume or bulk-scale nanomaterials and can be spatially homogeneous or inhomogeneous. This leads to new possibilities for tuning the physical and chemical properties of a material, such as electronic, optical, magnetic, phononic, and catalytic properties, by varying the six-dimensional elastic strain as continuous variables. By controlling the elastic strain field statically or dynamically, a much larger parameter space opens up for optimizing the functional properties of materials, which gives new meaning to Richard Feynman’s 1959 statement, “there’s plenty of room at the bottom.”National Science Foundation (U.S.) (DMR-1240933)National Science Foundation (U.S.) (DMR-1120901
    • 

    corecore