1,983 research outputs found

    Digital mammography, cancer screening: Factors important for image compression

    Get PDF
    The use of digital mammography for breast cancer screening poses several novel problems such as development of digital sensors, computer assisted diagnosis (CAD) methods for image noise suppression, enhancement, and pattern recognition, compression algorithms for image storage, transmission, and remote diagnosis. X-ray digital mammography using novel direct digital detection schemes or film digitizers results in large data sets and, therefore, image compression methods will play a significant role in the image processing and analysis by CAD techniques. In view of the extensive compression required, the relative merit of 'virtually lossless' versus lossy methods should be determined. A brief overview is presented here of the developments of digital sensors, CAD, and compression methods currently proposed and tested for mammography. The objective of the NCI/NASA Working Group on Digital Mammography is to stimulate the interest of the image processing and compression scientific community for this medical application and identify possible dual use technologies within the NASA centers

    M[pi]log, Macromodeling via parametric identification of logic gates

    Get PDF
    This paper addresses the development of computational models of digital integrated circuit input and output buffers via the identification of nonlinear parametric models. The obtained models run in standard circuit simulation environments, offer improved accuracy and good numerical efficiency, and do not disclose information on the structure of the modeled devices. The paper reviews the basics of the parametric identification approach and illustrates its most recent extensions to handle temperature and supply voltage variations as well as power supply ports and tristate devices

    Surface evaluation of carbon fibre composites using wavelet texture analysis

    Full text link
    Strong and lightweight fibre reinforced polymeric composites now dominate the aerospace, marine and low-volume automotive sectors. The surface finish on exterior composite panels is of critical importance for customer satisfaction. This paper describes the application of wavelet texture analysis (WTA) to the task of automatically classifying the surface finish of Carbon Fibre Reinforced Plastic (CFRP) samples into two quality grades. Automatic classification was successful for all but four samples out of 14,400 classification trial configurations, representing 403,200 sample classification attempts (28 attempts per configuration). This work establishes the principle of WTA as a basis for automatic surface finish classification of composite materials.No Full Tex

    Objective surface evaluation of fiber reinforced polymer composites

    Full text link
    The mechanical properties of advanced composites are essential for their structural performance, but the surface finish on exterior composite panels is of critical importance for customer satisfaction. This paper describes the application of wavelet texture analysis (WTA) to the task of automatically classifying the surface finish properties of two fiber reinforced polymer (FRP) composite construction types (clear resin and gel-coat) into three quality grades. Samples were imaged and wavelet multi-scale decomposition was used to create a visual texture representation of the sample, capturing image features at different scales and orientations. Principal components analysis was used to reduce the dimensionality of the texture feature vector, permitting successful classification of the samples using only the first principal component. This work extends and further validates the feasibility of this approach as the basis for automated non-contact classification of composite surface finish using image analysis.<br /

    Compact and Efficient Millimetre-Wave Circuits for Wideband Applications

    Get PDF
    Radio systems, along with the ever increasing processing power provided by computer technology, have altered many aspects of our society over the last century. Various gadgets and integrated electronics are found everywhere nowadays; many of these were science-fiction only a few decades ago. Most apparent is perhaps your ``smart phone'', possibly kept within arm's reach wherever you go, that provides various services, news updates, and social networking via wireless communications systems. The frameworks of the fifth generation wireless system is currently being developed worldwide. Inclusion of millimetre-wave technology promise high-speed piconets, wireless back-haul on pencil-beam links, and further functionality such as high-resolution radar imaging. This thesis addresses the challenge to provide signals at carrier frequencies in the millimetre-wave spectrum, and compact integrated transmitter front-ends of sub-wavelength dimensions. A radio frequency pulse generator, i.e. a ``wavelet genarator'', circuit is implemented using diodes and transistors in III--V compound semiconductor technology. This simple but energy-efficient front-end circuit can be controlled on the time-scale of picoseconds. Transmission of wireless data is thereby achieved at high symbol-rates and low power consumption per bit. A compact antenna is integrated with the transmitter circuit, without any intermediate transmission line. The result is a physically small, single-chip, transmitter front-end that can output high equivalent isotropically radiated power. This element radiation characteristic is wide-beam and suitable for array implementations

    Ranking of fibre-reinforced composite plate surface finish quality by wavelet texture analysis

    Get PDF
    In the automotive and other industries, the visual appearance of external surfaces is a key factor in perceived product quality. Traditionally, the quality of automotive surface finish has been judged by expert human auditors. A set of 17 fibre-reinforced composite plates was previously manufactured to have a range of surface finish quality, and these plates were previously ranked by three expert observers and also optically digitally imaged. Following validation of the previous rankings, we applied the wavelet texture analysis (WTA) technique to the digital photographs to derive an instrumental measure of surface finish quality based on the panel images. The rank correlation between the human expert surface finish quality ratings and those from the WTA image analysis process was found to be positive, large and statistically significant. This finding indicates that WTA could form the basis of an inexpensive practical instrumental method for the ranking of fibre-reinforced composite surface finish quality

    Parametric Macromodels of Digital I/O Ports

    Get PDF
    This paper addresses the development of macromodels for input and output ports of a digital device. The proposed macromodels consist of parametric representations that can be obtained from port transient waveforms at the device ports via a well established procedure. The models are implementable as SPICE subcircuits and their accuracy and efficiency are verified by applying the approach to the characterization of transistor-level models of commercial devices

    GaAs Implementation of FIR Filter

    Get PDF
    This thesis discusses the findings of the final year project involving Gallium Arsenide implementation of a triangular FIR filter to perform discrete wavelet transforms. The overall characteristics of Gallium Arsenide technology- its construction, behaviour and electrical charactersitics as they apply to VLSI technology - were investigated in this project. In depth understanding of its architecture is required to be able to understand the various design techniques employed. A comparison of Silicon and GaAs performance and other characteristics has also been made to fully justify the choice of this material for system implementation. A lot of research and active interest has gone into the field of image and video compression. Wavelet-based image transformation is one of the very efficient compression techniques used. An analysis of discrete wavelet transformations and the required triangular FIR filter was done to be able to produce a transform algorithm and the related filter architecture. Finally, the filter architecture was implemented as a VLSI design and layout. A variety of functional blocks required for the architecture were designed, tested and analysed. All these blocks were integrated to produce a model of a complete filter cell. The filter implementation was designed to be self-timed - without a system clock. Self-timed systems have considerable advantages over clocked architectures. Various design styles and handshaking mechanisms involved in designing a self-timed system were analysed and designed. There are many avenues still to explore. One of them is the VHDL analysis of filter architecture. Further development on this project would involve integration of higher-level logic and formation of a complete filter array

    On-line Partial Discharge Localization of 10-kV Covered Conductor Lines

    Get PDF
    This paper proposes an innovative partial discharge (PD) location technique for overhead electrical power distribution networks. It is aimed at improving the condition-based maintenance of the network. PD localization is carried out via an improved double-sided traveling-wave method. The method is driven by a hybrid detection technique, which integrates a pulse-based synchronization mechanism and a global positioning system (GPS). The proposed solution offers a number of benefits. It has the nice inherent feature of being immune to varying physical parameters of the transmission line, and it has been proven be offer improved accuracy with respect of the conventional GPS-based location methods. Also, an in-house designed portable and non-invasive test setup is presented and thoroughly discussed, thus demonstrating the feasibility of the proposed method. Moreover, an enhanced algorithm is embedded into the PD location system to improve robustness to high-level noise. Finally, the proposed tool relies on a well-established automatic procedure which requires neither parameter tuning nor any expert intervention. The features and strengths of the method are validated on a real case consisting of a 2125-m long 10-kV overhead covered conductor line
    • …
    corecore