3,867 research outputs found

    Grand Challenges of Traceability: The Next Ten Years

    Full text link
    In 2007, the software and systems traceability community met at the first Natural Bridge symposium on the Grand Challenges of Traceability to establish and address research goals for achieving effective, trustworthy, and ubiquitous traceability. Ten years later, in 2017, the community came together to evaluate a decade of progress towards achieving these goals. These proceedings document some of that progress. They include a series of short position papers, representing current work in the community organized across four process axes of traceability practice. The sessions covered topics from Trace Strategizing, Trace Link Creation and Evolution, Trace Link Usage, real-world applications of Traceability, and Traceability Datasets and benchmarks. Two breakout groups focused on the importance of creating and sharing traceability datasets within the research community, and discussed challenges related to the adoption of tracing techniques in industrial practice. Members of the research community are engaged in many active, ongoing, and impactful research projects. Our hope is that ten years from now we will be able to look back at a productive decade of research and claim that we have achieved the overarching Grand Challenge of Traceability, which seeks for traceability to be always present, built into the engineering process, and for it to have "effectively disappeared without a trace". We hope that others will see the potential that traceability has for empowering software and systems engineers to develop higher-quality products at increasing levels of complexity and scale, and that they will join the active community of Software and Systems traceability researchers as we move forward into the next decade of research

    Grand Challenges of Traceability: The Next Ten Years

    Full text link
    In 2007, the software and systems traceability community met at the first Natural Bridge symposium on the Grand Challenges of Traceability to establish and address research goals for achieving effective, trustworthy, and ubiquitous traceability. Ten years later, in 2017, the community came together to evaluate a decade of progress towards achieving these goals. These proceedings document some of that progress. They include a series of short position papers, representing current work in the community organized across four process axes of traceability practice. The sessions covered topics from Trace Strategizing, Trace Link Creation and Evolution, Trace Link Usage, real-world applications of Traceability, and Traceability Datasets and benchmarks. Two breakout groups focused on the importance of creating and sharing traceability datasets within the research community, and discussed challenges related to the adoption of tracing techniques in industrial practice. Members of the research community are engaged in many active, ongoing, and impactful research projects. Our hope is that ten years from now we will be able to look back at a productive decade of research and claim that we have achieved the overarching Grand Challenge of Traceability, which seeks for traceability to be always present, built into the engineering process, and for it to have "effectively disappeared without a trace". We hope that others will see the potential that traceability has for empowering software and systems engineers to develop higher-quality products at increasing levels of complexity and scale, and that they will join the active community of Software and Systems traceability researchers as we move forward into the next decade of research

    What Am I Testing and Where? Comparing Testing Procedures based on Lightweight Requirements Annotations

    Get PDF
    [Context] The testing of software-intensive systems is performed in different test stages each having a large number of test cases. These test cases are commonly derived from requirements. Each test stages exhibits specific demands and constraints with respect to their degree of detail and what can be tested. Therefore, specific test suites are defined for each test stage. In this paper, the focus is on the domain of embedded systems, where, among others, typical test stages are Software- and Hardware-in-the-loop. [Objective] Monitoring and controlling which requirements are verified in which detail and in which test stage is a challenge for engineers. However, this information is necessary to assure a certain test coverage, to minimize redundant testing procedures, and to avoid inconsistencies between test stages. In addition, engineers are reluctant to state their requirements in terms of structured languages or models that would facilitate the relation of requirements to test executions. [Method] With our approach, we close the gap between requirements specifications and test executions. Previously, we have proposed a lightweight markup language for requirements which provides a set of annotations that can be applied to natural language requirements. The annotations are mapped to events and signals in test executions. As a result, meaningful insights from a set of test executions can be directly related to artifacts in the requirements specification. In this paper, we use the markup language to compare different test stages with one another. [Results] We annotate 443 natural language requirements of a driver assistance system with the means of our lightweight markup language. The annotations are then linked to 1300 test executions from a simulation environment and 53 test executions from test drives with human drivers. Based on the annotations, we are able to analyze how similar the test stages are and how well test stages and test cases are aligned with the requirements. Further, we highlight the general applicability of our approach through this extensive experimental evaluation. [Conclusion] With our approach, the results of several test levels are linked to the requirements and enable the evaluation of complex test executions. By this means, practitioners can easily evaluate how well a systems performs with regards to its specification and, additionally, can reason about the expressiveness of the applied test stage.TU Berlin, Open-Access-Mittel - 202

    User Review-Based Change File Localization for Mobile Applications

    Get PDF
    In the current mobile app development, novel and emerging DevOps practices (e.g., Continuous Delivery, Integration, and user feedback analysis) and tools are becoming more widespread. For instance, the integration of user feedback (provided in the form of user reviews) in the software release cycle represents a valuable asset for the maintenance and evolution of mobile apps. To fully make use of these assets, it is highly desirable for developers to establish semantic links between the user reviews and the software artefacts to be changed (e.g., source code and documentation), and thus to localize the potential files to change for addressing the user feedback. In this paper, we propose RISING (Review Integration via claSsification, clusterIng, and linkiNG), an automated approach to support the continuous integration of user feedback via classification, clustering, and linking of user reviews. RISING leverages domain-specific constraint information and semi-supervised learning to group user reviews into multiple fine-grained clusters concerning similar users' requests. Then, by combining the textual information from both commit messages and source code, it automatically localizes potential change files to accommodate the users' requests. Our empirical studies demonstrate that the proposed approach outperforms the state-of-the-art baseline work in terms of clustering and localization accuracy, and thus produces more reliable results.Comment: 15 pages, 3 figures, 8 table

    Toward an Effective Automated Tracing Process

    Get PDF
    Traceability is defined as the ability to establish, record, and maintain dependency relations among various software artifacts in a software system, in both a forwards and backwards direction, throughout the multiple phases of the project’s life cycle. The availability of traceability information has been proven vital to several software engineering activities such as program comprehension, impact analysis, feature location, software reuse, and verification and validation (V&V). The research on automated software traceability has noticeably advanced in the past few years. Various methodologies and tools have been proposed in the literature to provide automatic support for establishing and maintaining traceability information in software systems. This movement is motivated by the increasing attention traceability has been receiving as a critical element of any rigorous software development process. However, despite these major advances, traceability implementation and use is still not pervasive in industry. In particular, traceability tools are still far from achieving performance levels that are adequate for practical applications. Such low levels of accuracy require software engineers working with traceability tools to spend a considerable amount of their time verifying the generated traceability information, a process that is often described as tedious, exhaustive, and error-prone. Motivated by these observations, and building upon a growing body of work in this area, in this dissertation we explore several research directions related to enhancing the performance of automated tracing tools and techniques. In particular, our work addresses several issues related to the various aspects of the IR-based automated tracing process, including trace link retrieval, performance enhancement, and the role of the human in the process. Our main objective is to achieve performance levels, in terms of accuracy, efficiency, and usability, that are adequate for practical applications, and ultimately to accomplish a successful technology transfer from research to industry
    corecore