10 research outputs found

    Deep Transfer Learning for Food Recognition

    Get PDF
    Food Recognition is an essential topic in the area of computer of its target applications is to avoid achieving a cashier at the dining place. In this paper, we investigate the application of Deep Transfer Learning for food recognition. We fine-tune three well learning models namely; AlexNet, GoogleNet, and Vgg16. The fine tuning procedure depends on removing the last three layers of each model and adds another five new layers. The training and validation of each model conducted through food a dataset collected from our university's canteen. The dataset contains 39 food types, 20 images for each type. The fine-tuned models show similar training and validation performance and achieved 100% accuracy over the small-scale dataset

    Feature-Suppressed Contrast for Self-Supervised Food Pre-training

    Full text link
    Most previous approaches for analyzing food images have relied on extensively annotated datasets, resulting in significant human labeling expenses due to the varied and intricate nature of such images. Inspired by the effectiveness of contrastive self-supervised methods in utilizing unlabelled data, weiqing explore leveraging these techniques on unlabelled food images. In contrastive self-supervised methods, two views are randomly generated from an image by data augmentations. However, regarding food images, the two views tend to contain similar informative contents, causing large mutual information, which impedes the efficacy of contrastive self-supervised learning. To address this problem, we propose Feature Suppressed Contrast (FeaSC) to reduce mutual information between views. As the similar contents of the two views are salient or highly responsive in the feature map, the proposed FeaSC uses a response-aware scheme to localize salient features in an unsupervised manner. By suppressing some salient features in one view while leaving another contrast view unchanged, the mutual information between the two views is reduced, thereby enhancing the effectiveness of contrast learning for self-supervised food pre-training. As a plug-and-play module, the proposed method consistently improves BYOL and SimSiam by 1.70\% ∼\sim 6.69\% classification accuracy on four publicly available food recognition datasets. Superior results have also been achieved on downstream segmentation tasks, demonstrating the effectiveness of the proposed method.Comment: Accepted by ACM MM 202

    Image-based food classification and volume estimation for dietary assessment: a review.

    Get PDF
    A daily dietary assessment method named 24-hour dietary recall has commonly been used in nutritional epidemiology studies to capture detailed information of the food eaten by the participants to help understand their dietary behaviour. However, in this self-reporting technique, the food types and the portion size reported highly depends on users' subjective judgement which may lead to a biased and inaccurate dietary analysis result. As a result, a variety of visual-based dietary assessment approaches have been proposed recently. While these methods show promises in tackling issues in nutritional epidemiology studies, several challenges and forthcoming opportunities, as detailed in this study, still exist. This study provides an overview of computing algorithms, mathematical models and methodologies used in the field of image-based dietary assessment. It also provides a comprehensive comparison of the state of the art approaches in food recognition and volume/weight estimation in terms of their processing speed, model accuracy, efficiency and constraints. It will be followed by a discussion on deep learning method and its efficacy in dietary assessment. After a comprehensive exploration, we found that integrated dietary assessment systems combining with different approaches could be the potential solution to tackling the challenges in accurate dietary intake assessment

    GourmetNet: Food Segmentation Using Multi-Scale Waterfall Features With Spatial and Channel Attention

    Get PDF
    Deep learning and Computer vision are extensively used to solve problems in wide range of domains from automotive and manufacturing to healthcare and surveillance. Research in deep learning for food images is mainly limited to food identification and detection. Food segmentation is an important problem as the first step for nutrition monitoring, food volume and calorie estimation. This research is intended to expand the horizons of deep learning and semantic segmentation by proposing a novel single-pass, end-to-end trainable network for food segmentation. Our novel architecture incorporates both channel attention and spatial attention information in an expanded multi-scale feature representation using the WASPv2 module. The refined features will be processed with the advanced multi-scale waterfall module that combines the benefits of cascade filtering and pyramid representations without requiring a separate decoder or postprocessing

    Egocentric Image Captioning for Privacy-Preserved Passive Dietary Intake Monitoring

    Get PDF
    Camera-based passive dietary intake monitoring is able to continuously capture the eating episodes of a subject, recording rich visual information, such as the type and volume of food being consumed, as well as the eating behaviours of the subject. However, there currently is no method that is able to incorporate these visual clues and provide a comprehensive context of dietary intake from passive recording (e.g., is the subject sharing food with others, what food the subject is eating, and how much food is left in the bowl). On the other hand, privacy is a major concern while egocentric wearable cameras are used for capturing. In this paper, we propose a privacy-preserved secure solution (i.e., egocentric image captioning) for dietary assessment with passive monitoring, which unifies food recognition, volume estimation, and scene understanding. By converting images into rich text descriptions, nutritionists can assess individual dietary intake based on the captions instead of the original images, reducing the risk of privacy leakage from images. To this end, an egocentric dietary image captioning dataset has been built, which consists of in-the-wild images captured by head-worn and chest-worn cameras in field studies in Ghana. A novel transformer-based architecture is designed to caption egocentric dietary images. Comprehensive experiments have been conducted to evaluate the effectiveness and to justify the design of the proposed architecture for egocentric dietary image captioning. To the best of our knowledge, this is the first work that applies image captioning to dietary intake assessment in real life settings

    Egocentric image captioning for privacy-preserved passive dietary intake monitoring

    Get PDF
    Camera-based passive dietary intake monitoring is able to continuously capture the eating episodes of a subject, recording rich visual information, such as the type and volume of food being consumed, as well as the eating behaviors of the subject. However, there currently is no method that is able to incorporate these visual clues and provide a comprehensive context of dietary intake from passive recording (e.g., is the subject sharing food with others, what food the subject is eating, and how much food is left in the bowl). On the other hand, privacy is a major concern while egocentric wearable cameras are used for capturing. In this article, we propose a privacy-preserved secure solution (i.e., egocentric image captioning) for dietary assessment with passive monitoring, which unifies food recognition, volume estimation, and scene understanding. By converting images into rich text descriptions, nutritionists can assess individual dietary intake based on the captions instead of the original images, reducing the risk of privacy leakage from images. To this end, an egocentric dietary image captioning dataset has been built, which consists of in-the-wild images captured by head-worn and chest-worn cameras in field studies in Ghana. A novel transformer-based architecture is designed to caption egocentric dietary images. Comprehensive experiments have been conducted to evaluate the effectiveness and to justify the design of the proposed architecture for egocentric dietary image captioning. To the best of our knowledge, this is the first work that applies image captioning for dietary intake assessment in real-life settings

    Deep learning in food category recognition

    Get PDF
    Integrating artificial intelligence with food category recognition has been a field of interest for research for the past few decades. It is potentially one of the next steps in revolutionizing human interaction with food. The modern advent of big data and the development of data-oriented fields like deep learning have provided advancements in food category recognition. With increasing computational power and ever-larger food datasets, the approach’s potential has yet to be realized. This survey provides an overview of methods that can be applied to various food category recognition tasks, including detecting type, ingredients, quality, and quantity. We survey the core components for constructing a machine learning system for food category recognition, including datasets, data augmentation, hand-crafted feature extraction, and machine learning algorithms. We place a particular focus on the field of deep learning, including the utilization of convolutional neural networks, transfer learning, and semi-supervised learning. We provide an overview of relevant studies to promote further developments in food category recognition for research and industrial applicationsMRC (MC_PC_17171)Royal Society (RP202G0230)BHF (AA/18/3/34220)Hope Foundation for Cancer Research (RM60G0680)GCRF (P202PF11)Sino-UK Industrial Fund (RP202G0289)LIAS (P202ED10Data Science Enhancement Fund (P202RE237)Fight for Sight (24NN201);Sino-UK Education Fund (OP202006)BBSRC (RM32G0178B8

    Egocentric vision-based passive dietary intake monitoring

    Get PDF
    Egocentric (first-person) perception captures and reveals how people perceive their surroundings. This unique perceptual view enables passive and objective monitoring of human-centric activities and behaviours. In capturing egocentric visual data, wearable cameras are used. Recent advances in wearable technologies have enabled wearable cameras to be lightweight, accurate, and with long battery life, making long-term passive monitoring a promising solution for healthcare and human behaviour understanding. In addition, recent progress in deep learning has provided an opportunity to accelerate the development of passive methods to enable pervasive and accurate monitoring, as well as comprehensive modelling of human-centric behaviours. This thesis investigates and proposes innovative egocentric technologies for passive dietary intake monitoring and human behaviour analysis. Compared to conventional dietary assessment methods in nutritional epidemiology, such as 24-hour dietary recall (24HR) and food frequency questionnaires (FFQs), which heavily rely on subjects’ memory to recall the dietary intake, and trained dietitians to collect, interpret, and analyse the dietary data, passive dietary intake monitoring can ease such burden and provide more accurate and objective assessment of dietary intake. Egocentric vision-based passive monitoring uses wearable cameras to continuously record human-centric activities with a close-up view. This passive way of monitoring does not require active participation from the subject, and records rich spatiotemporal details for fine-grained analysis. Based on egocentric vision and passive dietary intake monitoring, this thesis proposes: 1) a novel network structure called PAR-Net to achieve accurate food recognition by mining discriminative food regions. PAR-Net has been evaluated with food intake images captured by wearable cameras as well as those non-egocentric food images to validate its effectiveness for food recognition; 2) a deep learning-based solution for recognising consumed food items as well as counting the number of bites taken by the subjects from egocentric videos in an end-to-end manner; 3) in light of privacy concerns in egocentric data, this thesis also proposes a privacy-preserved solution for passive dietary intake monitoring, which uses image captioning techniques to summarise the image content and subsequently combines image captioning with 3D container reconstruction to report the actual food volume consumed. Furthermore, a novel framework that integrates food recognition, hand tracking and face recognition has also been developed to tackle the challenge of assessing individual dietary intake in food sharing scenarios with the use of a panoramic camera. Extensive experiments have been conducted. Tested with both laboratory (captured in London) and field study data (captured in Africa), the above proposed solutions have proven the feasibility and accuracy of using the egocentric camera technologies with deep learning methods for individual dietary assessment and human behaviour analysis.Open Acces
    corecore