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Abstract—A daily dietary assessment method named 24-
hour dietary recall has commonly been used in nutritional
epidemiology studies to capture detailed information of the
food eaten by the participants to help understand their di-
etary behaviour. However, in this self-reporting technique,
the food types and the portion size reported highly de-
pends on users’ subjective judgement which may lead to
a biased and inaccurate dietary analysis result. As a result,
a variety of visual-based dietary assessment approaches
have been proposed recently. While these methods show
promises in tackling issues in nutritional epidemiology
studies, several challenges and forthcoming opportunities,
as detailed in this study, still exist. This study provides an
overview of computing algorithms, mathematical models
and methodologies used in the field of image-based dietary
assessment. It also provides a comprehensive compari-
son of the state of the art approaches in food recognition
and volume/weight estimation in terms of their processing
speed, model accuracy, efficiency and constraints. It will
be followed by a discussion on deep learning method and
its efficacy in dietary assessment. After a comprehensive
exploration, we found that integrated dietary assessment
systems combining with different approaches could be the
potential solution to tackling the challenges in accurate
dietary intake assessment.

Index Terms—Dietary assessment, computer vision, 3D
reconstruction, machine learning, object recognition, and
mobile technology.

I. INTRODUCTION

ARECENT National Health Service (NHS) survey [1] in
England reported that the proportion of adults who were

obese or overweight was 26% and 36% respectively in 2016.
Unhealthy food consumption, including nutritional imbalance
and excess calorie intake, is one of the reasons which leads to
obesity [2]. Commonly used daily dietary assessment methods,
such as 24 hour dietary recalls (24HR), have proved effective in
helping users to understand their dietary behaviour and enable
targeted interventions to address the underlying health problems,
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such as obesity and Type 1 diabetes (T1D) [3]. It is well known
that the 24HR is a subjective technique which requires the
users to do a face-to-face or telephone interview with dietitians,
reporting their food intake with detailed information about the
food type and consumed food portion in the previous 24-hour
period. Since the procedure of the manual data collection is
not carried out directly by experienced dietitians, the consumed
portion size can only be estimated by users based on their
visual perceptions (e.g., 1 bowl of rice, 1 cup of juice) instead
of using weight scales, and thus the portion reported highly
depends on their judgement which may lead to a biased and
inaccurate dietary analysis result. To address this inaccuracy in
dietary assessments, increasing numbers of automatic dietary
assessment devices/systems with various sensing modalities,
ranging from acoustic sensing approach [4], inertial sensing
approach [5] to physiological measurement approach [6], have
been studied in the past decade.

The recent advances in computer vision and artificial intel-
ligence have changed every aspect of the way people mon-
itor their health and enabled the introduction of many new
applications [7]. A variety of visual-based dietary assessment
techniques have been proposed, which can be further divided
into image-assisted approach and image-based approach. One
of the major difference between these two approaches is that
the former is designed to supplement traditional text-based
assessment by recalling eating occasions in which manual image
analysis will be followed to access the nutrition intake, while
the latter allows fully automatic dietary assessment without
any human intervention [8]. Despite the great performance in
both of these approaches, image-based approach can further
reduce workload of dietitians in carrying out dietary assessment.
Nevertheless, the implementation of image-based dietary assess-
ment techniques is more complicated since it relies heavily on
computing algorithms due to its fully automated characteristics.
To facilitate the development and industrialisation of objective
dietary assessment technologies, and motivate researchers to
improve the accuracy of dietary reporting, an in-depth study
on image-based approach is an important step forward.

This study presents an extensive review of algorithms
and methodologies used in the field of image-based dietary
assessment. After a comprehensive search, a variety of high
impact research works have been reviewed. State-of-the-art
automatic food recognition and food volume/weight estimation
methods are compared with each other to highlight their
advantages and obstacles in implementation. In this study,
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food recognition methods can be divided into two categories
which are conventional approaches with manually designed
features and end-to-end image recognition with deep learning
approaches. Regarding food volume estimation, several
approaches have been attempted, ranging from stereo-based
approach, model-based approach, perspective transformation
approach, depth camera based approach to deep learning
approaches. Algorithms and methodologies used in such
approaches will be examined and discussed in the paper.
Despite there being several comprehensive reviews published
on the field of dietary assessment, they have their own particular
research focus. Vu et al. published a comprehensive review [9]
on sensor-based dietary assessment techniques instead of visual
approaches. A more visual-related review paper has been
published by [10], but it emphasises mainly on image-assisted
approaches. [8] focused on a wide range of methodologies
applied on visual approaches, including image-assisted and
image-based techniques, for dietary assessment. The procedure,
benefits and challenges for visual approaches have been dis-
cussed with respect to user comfort, review process and accuracy
on nutrition intake. This study, on the other hand, provides an
extensive review with the focus on the underlying computing
algorithms, mathematical models and methodologies applied in
image-based approaches and they are compared and assessed in
technical aspects such as processing speed and efficiency, food
recognition and volume estimation accuracy and constraints.
The main contributions of this study can be summarised as
follows: (1) This is, to the best of the authors’ knowledge, the
first comprehensive review on the state of the art on image-based
dietary assessment. (2) A diverse range of methods has been
proposed for use in dietary assessment and food quantity
control, however, to date no a clear and systematic classification
has been done to distinguish them from each other. This study
detailed the methods employed and divided them into several
major categories to show directions for future research. (3) A
critical comparison among different start-of-the-art automatic
food recognition and volume estimation approaches is presented
in which the advantages and limitations are summarised and
concluded. (4) With the advances in artificial intelligence, this
study has also explored the feasibility and potential of assessing
dietary intake based on deep learning in the future. The rest
of the study is organised as follows. Related works on data
preparation algorithms used in image-based assessment are
reviewed in Section II-A. Section II-B presents the related works
on food recognition, which can be divided into two subsections
including manually designed feature extraction approaches
and deep learning approaches. Food volume estimation using
stereo-based, model-based, perspective transformation, depth
camera based and deep learning based techniques are detailed
in Section II-C. Discussions are provided in Section III.

II. METHODOLOGIES AND DETAILED INFORMATION

In this section, the image-based methods proposed to assess
dietary intake is detailed as follows: (1) Data preparation meth-
ods will firstly be presented to show how they are applied to
locate the food items in the images/videos for further reducing
memory storage for long time dietary monitoring. (2) Automatic

food recognition methods will be explored to show how they are
used to assist dietitians in identifying the food items eaten by
users. (3) Food volume estimation methods are also shown to ex-
plain the underlying theories of using image-based technologies
to measure portion size of food items objectively. Furthermore, a
system diagram for image-based dietary assessment is presented
in Fig. 1.

A. Data Preparation

Image-based assessment uses captured images as the main
source of input for the analysis. Active and passive methods can
be selected to capture images according to the requirements of
the applications. Active method normally requires users to take
images before and after meals in a deliberate and intentional
way, while passive method refers to the techniques which are
able to handle image capturing without much human interven-
tion. Despite the convenience of the latter, the implementing
strategies are much more complicated. Video surveillance is an
important area in machine vision which has long been used for
passive monitoring. To monitor food intake, a wearable sensor or
mobile device which have a single camera or multiple cameras
embedded are required for video capturing. Nevertheless, data
storage for continuous long-term video surveillance is a major
limitation and problem. The reason is that passive method will
continuously generate image frames, which requires a huge
amount of memory space of the devices even though the sam-
pling rates or resolution can be reduced. Thus, several algorithms
have been proposed to pre-process the images before storage
in order to minimise the memory required and prolong the
recording time. A previous work by [11] proposed the use of real
time image filtering technique which removes redundant images
and finds a representative frame based on the similarities of
neighbouring frames with respect to the colour, texture and edge
profile. Apart from using the representative frame, eliminating
frames without food container is one alternative techniques to
further reduce memory storage. They presented an algorithm for
plate detection which finds circular dining plates based on Canny
detector [11], [12]. Edges are firstly converted into curves and the
redundant curves (arc) are removed by arc filtering. Convex hull
algorithm has been further applied on the remaining arcs to group
them. Circular regions can then be detected easily and which can
be used to locate food containers/dining plates. Similar idea has
been used by [13] to detect the precise location of the dinning
plates. Apart from plate detection, food segmentation also plays
an important role in data preparation. Increasing works show that
segmentation can improve the performance of food recognition.
In [11], [14], [15], several algorithms have been proposed to seg-
ment images by detecting the boundary of objects with the use
of active contours, i.e. edge-based segmentation (Snake model)
and region-based segmentation (Chan-Vese model). In [16],
the authors extend the idea and develop a modified Chan-Vese
algorithm to partition the image. In [13], a novel segmentation
technique has been proposed which converts the image into
CIELAB colour space. Mean shift filtering is then applied to
smooth the fine-grain texture and preserve the dominant colour.
This is followed by a region growing algorithm to merge the
pixels of similar colours into segments.
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Fig. 1. A system diagram for image-based dietary assessment.

TABLE I
FOOD RECOGNITION METHODS: CONVENTIONAL IMAGE RECOGNITION APPROACH WITH MANUALLY DESIGNED FEATURES AND END-TO-END IMAGE

RECOGNITION WITH DEEP LEARNING APPROACH

*SIFT: Scale-invariant feature transform, BOF: Bag-of-Features, FV: Fisher vector, SVM: Support vector machine, RF: Random forest.

B. Food Recognition

With the widespread use of smart phones, many mobile health
applications have been launched, e.g., MyDietCoach, Yazio,
MyFitnessPal, Foodnotes, MyFoodDiary and FatSecret. Such
mobile applications, however, require users to manually enter
the food types and consumed weight which are tedious and
burdensome [17]. To address the problem, automatic food recog-
nition has been investigated by researchers. Food recognition
is a crucial part in the dietary assessment process. Only after
recognising the type of food can we further compute the calorie
intake and analyse nutritional information. In food recognition,
the characteristics of food can be greatly attributed to their
surface colours, shapes and texture. Therefore, if a system
tries to identify a particular food object, feature descriptors
containing those underlying information should be extracted
first. In the following section, a summary of previous studies on
food recognition is shown. The food recognition methods can
mainly be divided into two categories which are conventional
image recognition approach with manually designed features
and end-to-end image recognition with deep learning approach
as shown in Table I.

1. Conventional Image Recognition Approach with Man-
ually Designed Features: The framework for conventional
food classification can be divided into two major tasks: Fea-
ture extraction and classification. Feature extraction refers to
computing a descriptor/ feature vector which can best reveal
the underlying visual information. There are several commonly
used feature extraction techniques which can extract informa-
tive visual data, such as Scale Invariant Feature Transform
(SIFT), Histogram of Oriented Gradients (HOG), Gabor filter,

MR8 filter and Local Binary Patterns (LBP). To enhance the
recognition rate of food classification, more sophisticated fea-
ture descriptors are developed by fusing different feature vectors.
For instance, [18] proposed a technique called multi-view food
recognition, i.e. pictures are taken from different viewing angles,
which addresses the problem of occlusions and restricted view of
using a single image. It starts from generating descriptors based
on Difference of Gaussian (DoG) and Scale Invariant Feature
Transform (SIFT). With the use of such techniques, the results
are invariant to lighting, scaling and affine transformation. Near-
est neighbour classifier are then used for food classification. [19]
has further extended their idea to improve the efficiency of
the SIFT descriptors. They stated that it is computationally
expensive to determine the similarity between images using
several hundred SIFT features. Thus, they proposed to cluster
SIFT features into visual words by using hierarchical k-means
clustering algorithms. Visual word, as shown in Fig. 2, refers
to the most representative descriptor over a particular set of
descriptors in the same cluster. Those visual words can be treated
as basis to build a visual library. A comprehensive research on
Bag-of-Features (BoF) method was conducted by [3]. The study
shows that the recognition accuracy can be further improved
with more visual words, however, saturation will be reached
in using a reasonable large number of features (6000 shown
in this study). It also raises an issue that SIFT-based feature
extraction technique may fail to produce a sufficient number of
feature points and suggests to use random and dense sampling
methods, which improves the performance of feature extraction
from 69% to 77% and 78% respectively. In addition, their results
showed that hsvSIFT and colour moment invariants achieved
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Fig. 2. (A) Feature point extraction. (B) Visual word construction. Pesto steak with balsamic tomatoes (2016) Available at-
https://www.olivemagazine.com/recipes/healthy/pesto-steak-with-balsamic-tomatoes/

the best accuracy among other SIFT-based and colour-based
techniques. Different linear and non-linear techniques, includ-
ing linear SVM, non-linear kernel-based SVMs, ANNs and
the Random Forests (RF), have been evaluated. Among those
techniques, linear SVM outperforms the others marginally by
i.e. 2 to 8%. Similar idea has also been proposed by [20], which
uses BoF, Segmentation-based Fractal Texture Analysis (SFTA)
and color histogram as feature descriptors. Apart from using
visual words, other coding techniques are also implemented to
improve the efficiency. For example, [21] proposed a real-time
food recognition system using RootHoG as features. Without
inputting the features directly into classifiers, Fisher Vector (FV)
is applied to encode the features, thus the speed of image recogni-
tion can be increased. In [22], five types of features are extracted,
including color, HOG, SIFT, LBP and MR8 filter. These features
are encoded through Locality-constrained Linear Coding (LLC),
using a dictionary learned via k-means clustering. Furthermore,
a comprehensive research [23] has been done to investigate into
the efficiency of using multikernel-based SVM. The authors
compare their proposed technique to other methods including
SIFT-based nearest neighbour classifier and texture-based SVM
and found that their technique outperforms the previous tech-
niques by around 20%. Since the feature descriptors used by their
study are different from the previous one, it is really difficult to
tell whether linear SVM is better than non-linear kernel based
SVM or vice versa in food recognition. An overall comparison
among traditional approaches is presented in Table II for further
information.

2. End-to-end Image Recognition with Deep Learning
Approach: Deep learning has gained much attention due to its
outstanding performance in different artificial intelligence appli-
cations; however, deep learning approach for food recognition
has only been considered in very few works. As there are a huge
variety of food types and the food pattern varies significantly
under different viewing angles and lighting conditions, standard
manually designed features extraction techniques often cannot
sufficiently abstract or represents the characteristics of the ob-
jects. In 2014, [27] published a paper of food recognition based
on deep learning. They applied a convolutional neural network
(CNN) to the tasks of dietary monitoring. In their experiments,

TABLE II
TRADITIONAL APPROACHES ON FOOD CLASSIFICATION

*Top 1 accuracy can be computed using (TP + TN)/(TP + TN + FP + FN).

they compared the efficiency and practicality between CNNs and
traditional SVM-based techniques using handcrafted features.
The traditional method has the accuracy of around 50-60%,
whereas the CNN outperforms them by 10%. Similar idea was
proposed in [28] in which image patches are extracted on a grid
for each food item, and the patches are then fed to a deep CNN.
Google [29] has also proposed a series of deep learning methods
which can be used in dietary assessment. They proposed using
GoogLeNet pre-trained on ImageNet dataset to perform food
recognition. The model has been fine tuned on the publicly
available Food101 dataset with 101 food items and examined
on it with 79% accuracy. The results outperform the method
based on handcrafted features and SVM classifier by 28% which
were tested on the same database. Besides, Google also made
a contribution on transfer learning which replaced the final
101-way softmax layer from their trained model and plugged
in another 41 logistic nodes from MenuMatch. The result is also
statistically significant compared to the traditional technique
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TABLE III
DEEP LEARNING APPROACHES ON FOOD CLASSIFICATION

*Top 1 accuracy can be computed using (TP + TN)/(TP + TN + FP + FN).

examined on the same database [22]. In a recent study, [17]
extended the underlying idea of GoogLeNet and proposed a
deep neural network with inception module to carry out food
recognition. They have carried out a comprehensive study on
the practicality of deep learning technique and examined their
network on several large publicly available datasets including
UEC-FOOD100, UEC-FOOD256 and Food101. The overall
accuracy for Food101 is 77% which gives similar result proposed
by Google. More research works based on deep-learning are
presented in Table III for further information. Whereas tradi-
tional approaches based on manually extracted features and deep
learning approaches were examined using different test datasets,
the recognition rate for deep learning methods still outperform
traditional ones, even in the case when the datasets have more
categories. This further confirmed the efficacy and practicality
of using deep learning methods in food recognition.

3. Case Study: Image-based Approach for Food Recog-
nition: Recent research has explored the use of image-based
approach for dietary assessment especially on automatic food
recognition. Several teams have already put their research works
into practice. In study [18], [19], the authors introduced a mobile
phone based food classifier with manually selected features
extraction method for health-related research and obesity man-
agement. The technique can be used to identify food items with
the aim of encouraging a healthy choice. For instance, a test

Fig. 3. Screenshots of the mobile application for food classification de-
veloped by Imperial College London [40]. The top 5 classes recognised
by the app based on the captured frame.

has been carried out in the study to distinguish similar food
items such as cheeseburgers, double cheeseburgers and burgers
without cheese. With the proposed technique, users are able
to select the food items according to their health conditions.
A similar idea has been proposed by Ravi et al. [40]. They
developed a mobile application for food intake classification
which provides real time feedback to users as shown in Fig. 3.
In addition, [29] examined their food classification system on
the real menu from 23 restaurants, and the top-5 error rate
is only around 25%. This illustrates that image-based dietary
assessment has great potential in converting research prototypes
into real-life applications.

C. Food Volume Estimation

To accurately quantify the dietary intake, measuring the por-
tion size or volume of food intake is essential. After a compre-
hensive exploration, a wide range of research works published
between 2009 and 2019 have been reviewed. Several state of the
art literature articles about food volume estimation are selected
and compared with each other to highlight their advantages
and limitations. The differentiation is proposed based on the
following five main categories, which is also shown in Table IV.

� Stereo-based approach: Stereo-based approach refers to
using multiple frames to reconstruct the 3D structure of
food objects by finding pixel correspondences between
image frames and using the extrinsic parameters to re-
project the pixels from image coordinate to world coordi-
nate.

� Model-based approach: Model-based approach refers to
pre-building shape templates (mathematical models) so
that the volume of objects can be determined by model
selection followed with model scaling and rotation, which
is also known as image registration.

� Depth camera based approach: Apart from monocular
cameras, other visual sensors are involved in dietary as-
sessment. The most commonly used sensor is the depth
camera such as Time Of Flight (TOF) camera. In using
depth camera based approach, the actual scale of object
items can be obtained without any reference object such
as a fiducial marker.

� Perspective transformation approach: This refers to the
method of estimating object volume based on a single
image. By using perspective transformation, a bird’s eye
view image can be obtained and a rough estimate on the
size of the object can be derived. This method does not
rely on pre-built shape templates, thus it is typically used
to estimate objects with irregular shapes.
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TABLE IV
FIVE TYPES OF VOLUME ESTIMATION APPROACHES: STEREO-BASED, MODEL-BASED, PERSPECTIVE TRANSFORMATION, DEPTH CAMERA BASED AND DEEP

LEARNING APPROACH

� Deep learning approach: Deep neural networks have
been extensively used in volume estimation. Several re-
search works proposed using a single RGB image to infer
the depth map. Voxel representation has been used to
present the depth map and the volume can be estimated
by counting the number of voxels occupied. In recent,
researches explored the use of point cloud completion to
achieve volume estimation.

Furthermore, the advantages and challenges for the different
approaches are also highlighted in Table V. To evaluate the
performance of dietary assessment, various food datasets have
been constructed by different research groups, however, most
of the publicly known datasets are constructed to examine the
performance of food classification only, instead of food volume
estimation. To examine the accuracy of volume estimation,
authors tend to construct their own databases, which is relatively
small in scale compared to the publicly known one. Thus, it
seems important to keep in mind which database is used in each
case when comparing results. The detailed research methodol-
ogy and comparison is shown as follows:

1. Stereo-based Approach: Stereo based approach can
mainly be divided into multi-view stereo method and binocu-
lar stereo method. Multi-view stereo method normally refers
to using at least two images taken by a moving camera to
reconstruct the 3D structure of the object item. Binocular stereo
method uses a binocular camera to capture stereo images and
reconstruct the target object structure. Compared to binocular
stereo based technique, the multi-view one is more commonly
used in food volume estimation due to the low cost and the
popularity of monocular cameras. In multi-view stereo method,
disparity is an important parameter in estimating depth value
in 3D reconstruction. It refers to the distance between two
corresponding points in the left and right image of a stereo
pair. A single image cannot provide any geometric information
about the scene. In the case of using a single image, the same
view can be observed in the image even if the target object is

Fig. 4. An illustration diagram of epipolar geometry.

placed in different distance from the camera as shown in Fig. 4.
Xi, where i = 1, 2, . . ., 4, can all be projected on the left frame
shown asXL. With multi-view images, the actual distance of the
object item can be determined. The underlying idea is that XR

will move along the epipolar line when the object item changes
its distance from the optical centre, i.e. X1 to X4. If the exact
location of XR is determined through point-correspondences,
the exact location of the object can be confirmed. This concept
is also known as epipolar geometry. The simplified formula of
epipolar geometry can be written as follows [41]:

xT
2 Ex1 = 0 (1)

where x2 and x1 refer to the same point, lying on the normalised
camera coordinate (z=1), from two frames matched through
point-correspondences and they can be further expressed as
x1 = [u1, v1, 1]

T and x2 = [u2, v2, 1]
T respectively. E is the

essential matrix which contains the information of camera ro-
tation and transition and it can also be expressed as a vector
e = [e1, e2, . . ., e9]. The unknown vector e can be computed
by Eight-point algorithm using eight pairs of matched points
shown as

[u1u2, u1v2, u1, v1u2, v1v2, v1, u2, v2, 1] · e = 0 (2)
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TABLE V
HIGH IMPACT RESEARCH WORKS ON VOLUME ESTIMATION PUBLISHED BETWEEN 2009 AND 2019
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TABLE V
CONTINUED

After E is computed, it can be converted back to rotation and
transition using the Singular Value Decomposition(SVD). Once
the rotation and translation parameters are obtained, the points
can be projected to the world coordinate using Triangulation by
equation (3).

s2x
∧
1Rx2 + x∧

1 t = 0 (3)

where s2 is the depth of x2, ∧ refers to the outer product here.
In 2009, [43] published the first paper on food volume esti-
mation based on multi-view stereo reconstruction. Afterwards,
increasing research works focus on using multiple images taken
from different angles to carry out 3D reconstruction for volume
estimation. In using such an approach, extrinsic calibration is
firstly carried out to determine the geometric relations between
captured frames, which is known as relative pose, or between
the frames and the reference object, which is known as absolute
pose [44]. To perform camera calibration, RANdom SAmple
Consensus (RANSAC) scheme is commonly used. RANSAC
scheme starts from extracting suitable descriptors, i.e. Harris
corners, SIFT and ORB, and n point-correspondences (n is nor-
mally set as 4) in different frames. However, features matching
in stereo vision is a slow process restricted by epipolar geometry.
Each pixel’s match can only be found on a slanted line called
epipolar line as shown in Fig. 4. In order to speed up the process,
image rectification has been performed to wrap the images such
that the two images appear as if they are captured with just
a horizontal displacement without any rotation, which limits
the features searching region to a straight horizontal line. This

undoubtedly speeds up the processing. Once the camera poses
are estimated, the matched feature points of the frames can be
projected to world coordinate using triangulation, i.e. Delaunay
triangulation [43], in order to construct 3D models. When using
a single camera to carry out 3D reconstruction, scale ambiguity
is always an issue which should be taken into account. It is for
this reason that the scale determination should be carried out to
recover the global scale factor in order to find the actual volume
of the food object. A fiducial marker with known dimensions,
such as a checker-board [41], are normally be placed along with
the food items as a reference. The fiducial marker can provide
geometric information such as width and height so as to help
calibrate the measurement and build the world coordinate. Open
source Computer Vision (OpenCV), a library containing a series
of algorithms, is widely used along with the fiducial marker
to help detect the corners of the checker-board, calculate the
intrinsic and extrinsic matrix to determine the focal length and
relative camera pose respectively. The mathematical expression
for the scale calculation can be shown as equation (4).

S = dReference/dEstimated (4)

where dReference refer to the actual dimension of the object in the
real world scene, and dEstimated refer to the dimension estimated
after 3D reconstruction in the world coordinate. In [43], the
average error in volume estimation is 5.75( ± 3.75)% when
dense stereo reconstruction has been applied. Despite the ef-
ficacy of the dense reconstruction, there are still limitations on
the proposed technique. One of the major drawbacks is that it
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Fig. 5. The implementation of the stereo-based volume estimation using SLAM. The visual odometry can be shown in the figure on the right (the
blue objects represent the location of the camera where the frames are captured and the green lines refer to the trajectory of the camera) [42].

takes around 33 seconds for the dense stereo reconstruction and
volume estimation in the paper (if a size of 1600× 1200 pixel
image is used). In study [44], the authors proposed the use of
two-view 3D reconstruction to speed up the processing time to
5.5 seconds per frame in 2017. The method can be divided into
three parts including extrinsic calibration, dense reconstruction
and volume estimation. In the extrinsic calibration, the authors
proposed a modified RANSAC method to carry out relative pose
extraction based on SURF descriptors. Local optimisation is
carried out by maximising inlier count and minimising inlier
distances when a new model is found using RANSAC. Besides,
an adaptive threshold estimation has been used to find the inlier
threshold instead of a fixed threshold value. With the use of
the proposed technique, the mean absolute percentage error
ranges from 8.2% to 9.8% examining on Meals-14 dataset. This
proposed technique has become the-state-of-art technique and
outperformed other stereo-based techniques which have been
tested with a similar size database. Similar idea has also been
proposed by [45] in which two-view dense stereo reconstruction
is carried out to reconstruct 3D food models. Apart from typi-
cal stereo-based techniques, a modified stereo-based approach
based on Simultaneous Localisation And Mapping (SLAM)
has been presented recently [42]. The visual SLAM framework
can be divided into four parts including visual odometry, loop
closure, back-end optimisation and mapping [41]. In [42], in
order to explore the feasibility of SLAM in continuous mea-
surement of food consumption, several experiments have been
carried out with their self-collected dataset. The overall volume
estimation accuracy can achieve 88.3% if the food item is not
consumed and 83.6% when the food item is being consumed.
Despite the fact that the accuracy is relatively low compared
to the traditional stereo-based approach, the real time property
of SLAM, as shown in Fig. 5, is worth investigating, as previ-
ously proposed techniques mostly relied on post-processing, and
SLAM-based approach could better estimate food consumption
by continuously capturing and measuring the food while it is
being consumed.

2. Model-based Approach: Despite the fact that stereo-based
approach can provide more spatial information about the food
geometry, it is considered troublesome to capture multi-view
images around the food during the meals. Instead of using
stereo-based method, model-based techniques have also been
proposed. Such approach refers to the use of pre-defined 3D
shape models/templates to estimate the target object volume.
A variety of 3D models will be constructed and stored in a

model library at the beginning. After food recognition, the model
corresponding to the label or with similar outlook/characteristics
will be selected from the library. The selected models are not
always perfectly fit to the object items. Thus, model selection
will always have to be rotated, translated and scaled to match
the contour of the food item in the image, which is known as
model registration. In 2015, [11] proposed a Virtual Reality (VR)
approach which makes use of the different mathematical models
to superimpose corresponding food items in the real world scene.
The volume of the mathematical models have been pre-defined
so that the volume of the food items can be estimated by scaling
and rotating the model. This idea has been used in Technology
Assisted Dietary Assessment (TADA) system as well [46], [16].
A similar model-based technique has also be proposed in [47].
The authors proposed the use of templates from model library
to represent the object items and use coordinate representation
to determine their location and size. The representation can be
written as E = (x, y, φ,Θ, sx, sz), where x and y refer to the
coordinate of x and y-axis respectively, φ refers to the elevation
angle of the object item, Θ refers to the rotation angle, and sx
and sz refers to the scale of the object item in x and y-axis
respectively. Through pose registration, the predefined models
can be projected into the world coordinate followed by volume
estimation. In using model-based approach, food volume can
be easily obtained even if single viewing angle is used. The
limitation of this approach, however, is that the model database
should be pre-trained. In such a case, if the object items are
unseen and irregular, this will induce a large estimation error.

3. Depth Camera based Approach: In [48], the authors
examined the practicality of using a depth camera to estimate
food volume. A single depth map has been captured using a
3D sensor system developed by [49] from the top, i.e. bird’s
eye view. A depth map refers to an image channel that presents
the information of the distance between the surfaces of objects
and the camera. The depth map is then converted to a voxel
representation to estimate the volume. Voxel representation is
a commonly used technique to quantify the object size by
counting the number of voxels that constructed the 3D models.
Similar technique has been used in various research works [29],
[48], [50]. While using voxel representation, the reference plane
should firstly be determined since the placement of voxels should
be perpendicular to the plane surface. In [29], RANSAC has
been used to find the plane geometry. In [48], the authors
further exploited an alternative method to find the reference
surface which is an expectation-maximisation based technique.
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The technique clusters the image into surface and non-surface
regions based on the depth and RGB information using Gaussian
Mixture Model (GMM). From the qualitative result, we can
see the plane searching is reasonably accurate, however, there
is still no quantitative data shown in the paper proving that
this technique outperforms RANSAC method. After examining
the performance of depth camera based volume estimation, the
authors found that 90% of testing samples are overestimated,
however, the underlying reason has not been discussed in the
paper. Similar problem has been found in [42]. The author stated
that the point cloud/voxel representation generated by a top
view depth map can only be used to tackle object items with
narrow top and wide bottom. It is for the reason that infra-red
light generated by depth camera cannot reach the bottom if
the upper part is wider. Due to the reason of limited viewing
angle, this will induce error on volume estimation. To solve this
problem, several ways have been proposed by previous research
works. For example, [42] proposed to address this problem by
carrying out point cloud completion based on symmetry. In [44],
the stereo-based approach using multiple images from different
angles to reconstruct 3D point cloud, was proposed to address
this issue.

4. Perspective Transformation Approach: Despite the ef-
ficacy of infra-red light and stereo-based cameras on volume
estimation, there has been relatively few depth cameras which
have been integrated into mobile or wearable devices for various
reasons, such as cost and power constraints. It is for these
reasons that much research on the topic of volume estimation
from a monocular camera is still gaining interests. Compared
with traditional depth camera techniques, estimating volume
from single RGB image is much more challenging, since it
requires accurate scale calibration of the camera based on a
reference object with known dimensions along with various
perspective transformations [51]. Besides, single image itself
does not have much geometric information, so that strong con-
straints or assumptions have to be used for 3D reconstruction.
For example, [52] presented a technique called the plate method,
which makes use of a plate with known dimension. In this
approach, coordinate transformations have been carried out to
locate the plane and find its corresponding surface equation
based on the known radius of the plate. Afterwards, the distance
between the optical center of the camera and the plate can be
determined. With known distance, the width and height of the
objects can be estimated respectively based on simple geometry
as shown in Fig. 6. In this approach, the line HG shown in
Fig. 6, which refers to the perspective projection of the height
of object in real world scene, is required to determine the actual
height of the object (point H and point G correspond to the
coordinate of the top and bottom of the object in the image
plane respectively). The algorithm has been examined on a
self-collected dataset with 10 object items. The overall accuracy
is of 88%. Despite the satisfactory performance, there is still
limited work on detecting the coordinate of those points without
manual operation. In using such approach, users need to locate
the top and bottom of the object items by themselves. This
also means that the sensors designed based on this approach
can only be semi-automatic and may further limit its use in

Fig. 6. (A) Width estimation. (B) Height estimation based on simple
geometry.

large-scale studies. In addition, to accurately estimate the food
volume based on perspective transformation approach, front
(top) view image is always required since the scale can only
be determined by the fiducial marker in this way. However, in
practice, users will seldom take food images from the top, instead
users are used to taking photos from the side or at a convenient
angle. Therefore, perspective transformation becomes important
in scale estimation since it can convert a geometric distorted
image to a front view image. [53] proposed the use of 12
feature points from the checker-board to determine a 3 ∗ 3 pro-
jective transformation matrix H . The equation can be shown as
equation (5).

wp
′
= Hp (5)

where p
′

refers to the features point after transformation and p
refers to the feature point before transformation. The transfor-
mation matrix H is defined up to an arbitrary scale factor. The
equation can also be expressed as equation (6).
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Afterwards, Direct Linear Transform (DLT) has been carried
out to estimate the transformation matrix/vector. Since H is
defined up to an arbitrary scale factor so that we have only 8
unknown parameters (at least 4 points needed). If more points
are used, it can be defined as a least squares problem. In order to
get an accurate transformation matrix, feature points matching
become important. A common way which has been widely used
is RANSAC. Furthermore, RANSAC is also a common way to
perform plane fitting. This is important to address the problem
when the image is captured at an angle but not from the top. For
example, if we are going to estimate the object volume based
on depth map but the image is not captured from the top view.
The depth value cannot be used directly since we do not have
the depth value of the horizontal surface, i.e. normally the table
or plate, which is occluded by the object. We cannot calculate
the height of the object just by subtracting the depth value of
object from the depth value of the surface. However, the depth
value of the surface can be determined by using plane fitting
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where the depth value of the non-occluded surface is used to fit
a plane. By using this plane, the depth value of the whole surface
can be determined and the height and volume of the object can
be calculated. To fit a plane, we need the exact coordinate of
minimum 3 points on a plane. The problem is that we do not
know which points are on the same surface in the real scene. One
solution is to perform RANSAC. To do RANSAC, three points
are chosen randomly and we assume those points are on the
same plane. After the plane is formed, there may be many other
points which will also lie on the plane. We can then compute
the distance between those points and the plane and count the
number of points which is lying within a predefined threshold,
i.e. these points are known as inliers. This process is iterated
until the plane formed can fit the largest number of inliers.

5. Deep Learning Approach: In recent years, deep learning
has been applied extensively to single images for computer
vision applications. The advantage of using deep neural network
for food volume estimation is that the scale of the monocular
image can be learned from the global cues of the scene without
the need of camera calibration, which means reference objects
with known dimension are not required. Also, a single RGB
image is enough to estimate the volume instead of using multiple
view images or a stereo camera approach. With the use of deep
learning technique to estimate the food volume, depth is always
important information to be used [54]. Though depth cameras
have gained increasing popularity in recent years, the majority of
mobile or wearable devices are still embedded with a monocular
RGB camera. This motivates the use of a model to predict the
depthmap. It is well known that estimating depth from single
RGB image is a challenging ill-posed problem. However, it is
still possible to get a reasonable accuracy by using the models
proposed by several research groups. For example, [55] has
proposed using multi-scale deep network to predict the depth
from a given single RGB image. The underlying idea of the
work is to make use of the coarse-scale network to predict the
depth of the global features and use a fine-scale network to refine
the local features. The work is later extended to a three-scale
architecture for further refinement. From the architecture, the
feature maps of different scales have been upsampled and fused
together to improve the global and local depth estimation [56].
Apart from the use of multiscale architecture, there are still other
techniques used in depth estimation. In [57], the author noticed
the continuous characteristic of depth value and proposed to
address the problem by formulating depth estimation into a
continuous conditional random field (CRF) learning problem.
With the use of this depth estimation technique, the food volume
can be estimated with a single RGB image which makes dietary
monitoring more efficient. In recent, Google [29] has proposed
using deep neural network to estimate the food volume. Regard-
ing to the coupled nature of depth and volume for every particular
object, a CNN architecture has been applied to a single RGB
image to estimate the depthmap. The model has been pre-trained
based on NYU v2 RGBD dataset and then fine tuned on their
newly collected dataset called GFood3d with 60 different meals
from various Google cafes i.e.150 k frames (This dataset is
not disclosed). The data has been collected by RealSenseF200
depth sensor. After the depthmap is obtained by the trained

model, it is converted to a voxel representation. With the voxel
representation and the segmented labeling, the volume of the
labelled items can be obtained respectively. The performance
has been examined by comparing the result with the dataset
called NFood-3 d which contains food with volume labelled
(This dataset is not disclosed). In this work, food segmentation
has not been performed since their segmentation model does
not work on their dataset due to dissimilar colour and texture
property of artificial food and real food. In this case, the volume
of segmented food cannot be estimated, instead it is estimated
as a whole meal. The error for each meal lies between 50˜cm3

and 400˜cm3. From the experimental results, the performance
of this work is difficult to evaluate since the volume of ground
truth for each meal is not disclosed as well. Similar research
work [58] has also been published. The work aims at regressing
the Bread Units (BUs), which is a mathematical function of food
volume and bread unit density, by deep neural network in order
to assess nutritional information for diabetes patients. The author
proposed a 2-stage approach to achieve the BUs estimation.
First, a fully convolutional neural network has been trained with
the use of the NYU Depth v2 dataset (this is not a food database)
to predict the depth map of a given food image. Second, they
trained another neural network on top of Resnet-50 proposed
in [59] to regress the bread units by using both RGB images
and ground-truth depth maps (measured by Microsoft Kinect v2
sensor) as input. The last layer of the network has been replaced
with a single neuron with corresponding L2 cost function rather
than using a softmax-layer. Besides, the author states that initial-
ising the weights of neural networks from similar tasks can help
promote convergence and reach a higher absolute performance.
It is for theses reasons that the model used in stage 2 has
been pre-trained on the Food101 database and trained on their
manually built food database with 60 western dishes afterwards
i.e. 9 k images labelled with corresponding BUs. This means
that the authors initialise the filter parameters corresponding to
the RGB input with the pretrained value and set the parameters
corresponding to depth randomly in the initialisation scheme.
Last but not least, the estimated depth map generated in the
first step will be fused with RGB images to predict the BUs. In
this study, the performance of the model has been examined by
using BU prediction so that it is difficult to compare this with
previously proposed works which estimate the volume. Because
of this, we investigated into the depth prediction model in order
to evaluate the performance. To estimate the volume from a
single RGB image, the accuracy of the inferred depthmap is an
important parameter that directly affects the performance and
efficacy of volume estimation. However, the depth prediction
model proposed by [58], which is the state of the art, still
achieve RMSE of 65 cm, on the dataset of NYU Depth v2
and achieve 12.9 cm, on their own food dataset. This error is
considered to be reasonably small if it is used in mapping or
robotic navigation but for the case of food volume estimation,
this error is still large. Nevertheless, comparing the qualitative
results of two proposed works based on deep learning, the latter
one infers depth map with more fine local details. Apart from
estimating food volume based on predicted depth image, [60],
[61] proposed using shape completion technique to estimate
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food volume recently. In the study, they stated that the back side
of food items cannot be captured due to limited viewing angle,
and thus the food volume will be underestimated. To address the
problem, shape completion network has been used to complete
the occluded region of the food items. Alphashape algorithm is
then used to compute the volume of the completed food items.
Furthermore, [62] makes use of Generative Adversarial Net-
works (GAN) to infer food energy (kilo-calories). To conclude,
it is still challenging to use deep learning to estimate food volume
due to the reason of insufficient information from a single image
to accurately reconstructing the 3D objects, and not enough
representative training data to train the network. Compared to
other volume estimation technique, the error is relatively large,
however, volume estimation based on single image is still worth
investigating due to the reason of practicality and the ease of
use.

6. Case Study: Image-based Approach for Volume Esti-
mation: For volume estimation, several teams have already put
their research works into practice. In study [44], the authors
have developed a carbohydrate counting system based on stereo-
based approach. 77 real meals with known volume have been
evaluated using mobile phones and achieved an average error
rate of 10%. A clinical trial has also been carried out in their
study which explored the feasibility of using the technique in
improving self-management of patients with type 1 diabetes. In
additional to stereo-based approach, model-based approach is
also commonly used in the field of dietary assessment. Ongoing
research work [11] aims to develop a multi-purpose, unified
wearable sensor using model-based approach to acquire data for
the evaluation of dietary intake, which is easier to incorporate
into users’ daily routines compared to stereo-based approach.
A pilot study of seven human subjects was conducted to assess
the feasibility of using wearable sensors to achieve dietary food
intake measurement. This study indicates that the use of wear-
able devices for monitoring dietary food intake shows a strong
potential to reduce the burdens on users in reporting the food
volume. For the other approaches, most of them are developed
for research purposes and limited to laboratory settings without
any clinical trials and industrial applications at the current stage.
More studies are required to carry out in the real world scenario
to realise the potential impact of wearable sensors for dietary
assessment and personal health study.

III. DISCUSSION

In image/food recognition, several research works have for-
mally validated that deep neural network outperforms traditional
approaches, based on manually extracted features, using crite-
rion measures and publicly known databases. Despite existing
approaches show promising results in tackling the issue of food
recognition, there still exists a wide range of challenges and
hurdles in estimating the nutrient intake, as nutritional food
information rely mostly on portion size, and the performance
of up-to-date volume estimation techniques is not yet satisfac-
tory. Stereo-based techniques rely strongly on feature matching
between frames. This special property facilitates the volume
estimation of food items in irregular food shape so that a larger

variety of food items can be measured automatically without
manual intervention and pre-trained model library. However,
the drawback is that the 3D models cannot be reconstructed
and the volume estimation will fail if the food surface does not
have distinctive characteristics or texture. Another concern is
that stereo-based approach requires users to capture multiple
images from different viewing angles before and after eating,
which in turn makes this approach very tedious and not suitable
to be applied on wearable sensors for long-term health mon-
itoring and data collection. These findings show that dietary
assessment based on a single image seems to be one of the
future trends in dietary assessment. High estimation accuracy
in model-based approach proves the feasibility of using a single
image to assess food intake along with a pre-trained model
library. However, the existing research studies on model-based
approach have only examined their algorithms on small model
libraries consisting of several simple geometric shapes such as
cube, sphere, cone, cylinder and etc. Further works are required
to develop a more comprehensive model library which is able
to deal with food items even in irregular shape. With respect
to perspective transformation approach, it usually has strong
constraints on the image capturing angle and position. Besides,
perspective transformation are required before estimating the
scale. Although the processing time has not been discussed in the
study using perspective transformation approach, it is reasonable
to think that the process is time-consuming due to the two-stage
perspective transformation (to obtain the top and the side view)
in order to obtain the scale from the fiducial marker. For deep
learning approach, the problem of food volume/weight estima-
tion by means of deep neural network is harder than initially
expected and the accuracy rate is relatively low compared to
other approaches, which have been validated in the previous
section. These findings illustrate that deep learning approach
seems to not be able to handle the problem individually without
combining with other approaches. Most importantly, most of
these approaches are currently developed for research purposes
and limited to laboratory settings.

After extensive reviews and comparison, to the best of the
authors’ knowledge, the depth camera based approach is the
most robust and efficient technique compared to the previously
mentioned approaches, as it can be used to determine the scale
and estimate volume without relying on any fiducial markers.
The main challenge that lies ahead for this approach is to tackle
the issues of view occlusion. Occlusion refers to information
lost when the back of the food items cannot be captured due
to the limited viewing angle, and thus the 3D model cannot
be perfectly reconstructed. This will inevitably induce errors
in volume estimation, i.e. overestimation. It is for this reason
that model completion/point cloud completion is required to
build on top of the existing methodologies to tackle the issue.
While deep learning approach does not show promising results in
volume estimation, on the contrary, it has large potential in view
synthesis [72], which refers to the technique that synthesises
various images captured from different viewing angles based on
a single image. Undoubtedly, it stands a high chance to improve
the performance of model completion/point cloud completion as
well as the estimation accuracy. An integrated system based on
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depth camera based approach along with view synthesis using
deep learning methods could be one of the future directions
to tackle the issue. Apart from depth camera based approach,
SLAM-based technique is also a promising approach. Due to its
real time property, it can estimate the volume of the object item
as well as dietary intake while the user is consuming the food.
Not only can this provide more comprehensive monitoring, but
it can also obtain the eating behaviour of the users such as intake
sequence and speed, which are not feasible with traditional
methods. Further research works to examine these hypothesis
and additional validation studies are also required.

IV. CONCLUSION

This is the first review which investigates the underlying
algorithms and mathematical models used in the field of di-
etary assessment especially on food recognition and volume
estimation. After a comprehensive review on several state-of-
the-art food recognition systems, recent research has found to
be focused on exploring the potential of assessing dietary intake
based with deep learning approach. Furthermore, the state of
the art approaches in food volume estimation are summarised
and discussed in this study. Extensive comparison has also been
presented to highlight the main advantages and challenges of
different approaches. Overall, there is currently a growing po-
tential in integrating different approaches to improve the overall
accuracy in food volume estimation. If the challenges can be
resolved, image-based dietary assessment will definitely play
an important role in nutritional health monitoring in the near
future.
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