823 research outputs found

    Quantifying the Evolutionary Self Structuring of Embodied Cognitive Networks

    Full text link
    We outline a possible theoretical framework for the quantitative modeling of networked embodied cognitive systems. We notice that: 1) information self structuring through sensory-motor coordination does not deterministically occur in Rn vector space, a generic multivariable space, but in SE(3), the group structure of the possible motions of a body in space; 2) it happens in a stochastic open ended environment. These observations may simplify, at the price of a certain abstraction, the modeling and the design of self organization processes based on the maximization of some informational measures, such as mutual information. Furthermore, by providing closed form or computationally lighter algorithms, it may significantly reduce the computational burden of their implementation. We propose a modeling framework which aims to give new tools for the design of networks of new artificial self organizing, embodied and intelligent agents and the reverse engineering of natural ones. At this point, it represents much a theoretical conjecture and it has still to be experimentally verified whether this model will be useful in practice.

    Highly symmetric POVMs and their informational power

    Get PDF
    We discuss the dependence of the Shannon entropy of normalized finite rank-1 POVMs on the choice of the input state, looking for the states that minimize this quantity. To distinguish the class of measurements where the problem can be solved analytically, we introduce the notion of highly symmetric POVMs and classify them in dimension two (for qubits). In this case we prove that the entropy is minimal, and hence the relative entropy (informational power) is maximal, if and only if the input state is orthogonal to one of the states constituting a POVM. The method used in the proof, employing the Michel theory of critical points for group action, the Hermite interpolation and the structure of invariant polynomials for unitary-antiunitary groups, can also be applied in higher dimensions and for other entropy-like functions. The links between entropy minimization and entropic uncertainty relations, the Wehrl entropy and the quantum dynamical entropy are described.Comment: 40 pages, 3 figure

    Information dynamics: Temporal behavior of uncertainty measures

    Full text link
    We carry out a systematic study of uncertainty measures that are generic to dynamical processes of varied origins, provided they induce suitable continuous probability distributions. The major technical tool are the information theory methods and inequalities satisfied by Fisher and Shannon information measures. We focus on a compatibility of these inequalities with the prescribed (deterministic, random or quantum) temporal behavior of pertinent probability densities.Comment: Incorporates cond-mat/0604538, title, abstract changed, text modified, to appear in Cent. Eur. J. Phy

    Highly symmetric POVMs and their informational power

    Get PDF
    • …
    corecore