413 research outputs found

    Information-Theoretic Multiclass Classification Based on Binary Classifiers: On Coding Matrix Design, Reliability and Maximum Number of Classes

    Get PDF
    In this paper, we consider the multiclass classification problem based on sets of independent binary classifiers. Each binary classifier represents the output of a quantized projection of training data onto a randomly generated orthonormal basis vector thus producing a binary label. The ensemble of all binary labels forms an analogue of a coding matrix. The properties of such kind of matrices and their impact on the maximum number of uniquely distinguishable classes are analyzed in this paper from an information-theoretic point of view. We also consider a concept of reliability for such kind of coding matrix generation that can be an alternative to other adaptive training techniques and investigate the impact on the bit error probability. We demonstrate that it is equivalent to the considered random coding matrix without any bit reliability information in terms of recognition rat

    Wireless Data Acquisition for Edge Learning: Data-Importance Aware Retransmission

    Full text link
    By deploying machine-learning algorithms at the network edge, edge learning can leverage the enormous real-time data generated by billions of mobile devices to train AI models, which enable intelligent mobile applications. In this emerging research area, one key direction is to efficiently utilize radio resources for wireless data acquisition to minimize the latency of executing a learning task at an edge server. Along this direction, we consider the specific problem of retransmission decision in each communication round to ensure both reliability and quantity of those training data for accelerating model convergence. To solve the problem, a new retransmission protocol called data-importance aware automatic-repeat-request (importance ARQ) is proposed. Unlike the classic ARQ focusing merely on reliability, importance ARQ selectively retransmits a data sample based on its uncertainty which helps learning and can be measured using the model under training. Underpinning the proposed protocol is a derived elegant communication-learning relation between two corresponding metrics, i.e., signal-to-noise ratio (SNR) and data uncertainty. This relation facilitates the design of a simple threshold based policy for importance ARQ. The policy is first derived based on the classic classifier model of support vector machine (SVM), where the uncertainty of a data sample is measured by its distance to the decision boundary. The policy is then extended to the more complex model of convolutional neural networks (CNN) where data uncertainty is measured by entropy. Extensive experiments have been conducted for both the SVM and CNN using real datasets with balanced and imbalanced distributions. Experimental results demonstrate that importance ARQ effectively copes with channel fading and noise in wireless data acquisition to achieve faster model convergence than the conventional channel-aware ARQ.Comment: This is an updated version: 1) extension to general classifiers; 2) consideration of imbalanced classification in the experiments. Submitted to IEEE Journal for possible publicatio

    Local learning by partitioning

    Full text link
    In many machine learning applications data is assumed to be locally simple, where examples near each other have similar characteristics such as class labels or regression responses. Our goal is to exploit this assumption to construct locally simple yet globally complex systems that improve performance or reduce the cost of common machine learning tasks. To this end, we address three main problems: discovering and separating local non-linear structure in high-dimensional data, learning low-complexity local systems to improve performance of risk-based learning tasks, and exploiting local similarity to reduce the test-time cost of learning algorithms. First, we develop a structure-based similarity metric, where low-dimensional non-linear structure is captured by solving a non-linear, low-rank representation problem. We show that this problem can be kernelized, has a closed-form solution, naturally separates independent manifolds, and is robust to noise. Experimental results indicate that incorporating this structural similarity in well-studied problems such as clustering, anomaly detection, and classification improves performance. Next, we address the problem of local learning, where a partitioning function divides the feature space into regions where independent functions are applied. We focus on the problem of local linear classification using linear partitioning and local decision functions. Under an alternating minimization scheme, learning the partitioning functions can be reduced to solving a weighted supervised learning problem. We then present a novel reformulation that yields a globally convex surrogate, allowing for efficient, joint training of the partitioning functions and local classifiers. We then examine the problem of learning under test-time budgets, where acquiring sensors (features) for each example during test-time has a cost. Our goal is to partition the space into regions, with only a small subset of sensors needed in each region, reducing the average number of sensors required per example. Starting with a cascade structure and expanding to binary trees, we formulate this problem as an empirical risk minimization and construct an upper-bounding surrogate that allows for sequential decision functions to be trained jointly by solving a linear program. Finally, we present preliminary work extending the notion of test-time budgets to the problem of adaptive privacy

    Tree-structured multiclass probability estimators

    Get PDF
    Nested dichotomies are used as a method of transforming a multiclass classification problem into a series of binary problems. A binary tree structure is constructed over the label space that recursively splits the set of classes into subsets, and a binary classification model learns to discriminate between the two subsets of classes at each node. Several distinct nested dichotomy structures can be built in an ensemble for superior performance. In this thesis, we introduce two new methods for constructing more accurate nested dichotomies. Random-pair selection is a subset selection method that aims to group similar classes together in a non-deterministic fashion to easily enable the construction of accurate ensembles. Multiple subset evaluation takes this, and other subset selection methods, further by evaluating several different splits and choosing the best performing one. Finally, we also discuss the calibration of the probability estimates produced by nested dichotomies. We observe that nested dichotomies systematically produce under-confident predictions, even if the binary classifiers are well calibrated, and especially when the number of classes is high. Furthermore, substantial performance gains can be made when probability calibration methods are also applied to the internal models

    Towards the text compression based feature extraction in high impedance fault detection

    Get PDF
    High impedance faults of medium voltage overhead lines with covered conductors can be identified by the presence of partial discharges. Despite it is a subject of research for more than 60 years, online partial discharges detection is always a challenge, especially in environment with heavy background noise. In this paper, a new approach for partial discharge pattern recognition is presented. All results were obtained on data, acquired from real 22 kV medium voltage overhead power line with covered conductors. The proposed method is based on a text compression algorithm and it serves as a signal similarity estimation, applied for the first time on partial discharge pattern. Its relevancy is examined by three different variations of classification model. The improvement gained on an already deployed model proves its quality.Web of Science1211art. no. 214

    Boosted Feature Generation for Classification Problems Involving High Numbers of Inputs and Classes

    Get PDF
    Classification problems involving high numbers of inputs and classes play an important role in the field of machine learning. Image classification, in particular, is a very active field of research with numerous applications. In addition to their high number, inputs of image classification problems often show significant correlation. Also, in proportion to the number of inputs, the number of available training samples is usually low. Therefore techniques combining low susceptibility to overfitting with good classification performance have to be found. Since for many tasks data has to be processed in real time, computational efficiency is crucial as well. Boosting is a machine learning technique, which is used successfully in a number of application areas, in particular in the field of machine vision. Due to it's modular design and flexibility, Boosting can be adapted to new problems easily. In addition, techniques for optimizing classifiers produced by Boosting with respect to computational efficiency exist. Boosting builds linear ensembles of base classifiers in a stage-wise fashion. Sample-weights reflect whether training samples are hard-to-classify or not. Therefore Boosting is able to adapt to the given classification problem over the course of training. The present work deals with the design of techniques for adapting Boosting to problems involving high numbers of inputs and classes. In the first part, application of Boosting to multi-class problems is analyzed. After giving an overview of existing approaches, a new formulation for base-classifiers solving multi-class problems by splitting them into pair-wise binary subproblems is presented. Experimental evaluation shows the good performance and computational efficiency of the proposed technique compared to state-of-the-art techniques. In the second part of the work, techniques that use Boosting for feature generation are presented. These techniques use the distribution of sample weights, produced by Boosting, to learn features that are adapted to the problems solved in each Boosting stage. By using smoothing-spline base classifiers, gradient descent schemes can be incorporated to find features that minimize the cost function of the current base classifier. Experimental evaluation shows, that Boosting with linear projective features significantly outperforms state-of-the-art approaches like e.g. SVM and Random Forests. In order to be applicable to image classification problems, the presented feature generation scheme is extended to produce shift-invariant features. The utilized features are inspired by the features used in Convolutional Neural Networks and perform a combination of convolution and subsampling. Experimental evaluation for classification of handwritten digits and car side-views shows that the proposed system is competitive to the best published results. The presented scheme has the advantages of being very simple and involving a low number of design parameters only

    Lean Multiclass Crowdsourcing

    Get PDF
    We introduce a method for efficiently crowdsourcing multiclass annotations in challenging, real world image datasets. Our method is designed to minimize the number of human annotations that are necessary to achieve a desired level of confidence on class labels. It is based on combining models of worker behavior with computer vision. Our method is general: it can handle a large number of classes, worker labels that come from a taxonomy rather than a flat list, and can model the dependence of labels when workers can see a history of previous annotations. Our method may be used as a drop-in replacement for the majority vote algorithms used in online crowdsourcing services that aggregate multiple human annotations into a final consolidated label. In experiments conducted on two real-life applications we find that our method can reduce the number of required annotations by as much as a factor of 5.4 and can reduce the residual annotation error by up to 90% when compared with majority voting. Furthermore, the online risk estimates of the models may be used to sort the annotated collection and minimize subsequent expert review effort

    Multivariate classification of gene expression microarray data

    Get PDF
    L'expressiódels gens obtinguts de l'anàliside microarrays s'utilitza en molts casos, per classificar les cèllules. En aquestatesi, unaversióprobabilística del mètodeDiscriminant Partial Least Squares (p-DPLS)s'utilitza per classificar les mostres de les expressions delsseus gens. p-DPLS esbasa en la regla de Bayes de la probabilitat a posteriori. Aquestsclassificadorssónforaçats a classficarsempre.Per superaraquestalimitaciós'haimplementatl'opció de rebuig.Aquestaopciópermetrebutjarlesmostresamb alt riscd'errors de classificació (és a dir, mostresambigüesi outliers).Aquestaopció de rebuigcombinacriterisbasats en els residuals x, el leverage ielsvalorspredits. A més,esdesenvolupa un mètode de selecció de variables per triarels gens mésrellevants, jaque la majoriadels gens analitzatsamb un microarraysónirrellevants per al propòsit particular de classificacióI podenconfondre el classificador. Finalment, el DPLSs'estenen a la classificació multi-classemitjançant la combinació de PLS ambl'anàlisidiscriminant lineal

    Mechanisms of Maximum Information Preservation in the Drosophila Antennal Lobe

    Get PDF
    We examined the presence of maximum information preservation, which may be a fundamental principle of information transmission in all sensory modalities, in the Drosophila antennal lobe using an experimentally grounded network model and physiological data. Recent studies have shown a nonlinear firing rate transformation between olfactory receptor neurons (ORNs) and second-order projection neurons (PNs). As a result, PNs can use their dynamic range more uniformly than ORNs in response to a diverse set of odors. Although this firing rate transformation is thought to assist the decoder in discriminating between odors, there are no comprehensive, quantitatively supported studies examining this notion. Therefore, we quantitatively investigated the efficiency of this firing rate transformation from the viewpoint of information preservation by computing the mutual information between odor stimuli and PN responses in our network model. In the Drosophila olfactory system, all ORNs and PNs are divided into unique functional processing units called glomeruli. The nonlinear transformation between ORNs and PNs is formed by intraglomerular transformation and interglomerular interaction through local neurons (LNs). By exploring possible nonlinear transformations produced by these two factors in our network model, we found that mutual information is maximized when a weak ORN input is preferentially amplified within a glomerulus and the net LN input to each glomerulus is inhibitory. It is noteworthy that this is the very combination observed experimentally. Furthermore, the shape of the resultant nonlinear transformation is similar to that observed experimentally. These results imply that information related to odor stimuli is almost maximally preserved in the Drosophila olfactory circuit. We also discuss how intraglomerular transformation and interglomerular inhibition combine to maximize mutual information
    corecore