21 research outputs found

    Active learning is planning: Nonmyopic -Bayesoptimal active learning of Gaussian processes

    Get PDF
    Abstract. A fundamental issue in active learning of Gaussian processes is that of the exploration-exploitation trade-off. This paper presents a novel nonmyopic -Bayes-optimal active learning ( -BAL) approach [4] that jointly optimizes the trade-off. In contrast, existing works have primarily developed greedy algorithms or performed exploration and exploitation separately. To perform active learning in real time, we then propose an anytime algorithm [4] based on -BAL with performance guarantee and empirically demonstrate using a real-world dataset that, with limited budget, it outperforms the state-of-the-art algorithms

    GP-Localize: Persistent Mobile Robot Localization using Online Sparse Gaussian Process Observation Model

    Full text link
    Central to robot exploration and mapping is the task of persistent localization in environmental fields characterized by spatially correlated measurements. This paper presents a Gaussian process localization (GP-Localize) algorithm that, in contrast to existing works, can exploit the spatially correlated field measurements taken during a robot's exploration (instead of relying on prior training data) for efficiently and scalably learning the GP observation model online through our proposed novel online sparse GP. As a result, GP-Localize is capable of achieving constant time and memory (i.e., independent of the size of the data) per filtering step, which demonstrates the practical feasibility of using GPs for persistent robot localization and autonomy. Empirical evaluation via simulated experiments with real-world datasets and a real robot experiment shows that GP-Localize outperforms existing GP localization algorithms.Comment: 28th AAAI Conference on Artificial Intelligence (AAAI 2014), Extended version with proofs, 10 page

    Recent Advances in Scaling Up Gaussian Process Predictive Models for Large Spatiotemporal Data

    Get PDF
    The expressive power of Gaussian process (GP) models comes at a cost of poor scalability in the size of the data. To improve their scalability, this paper presents an overview of our recent progress in scaling up GP models for large spatiotemporally correlated data through parallelization on clusters of machines, online learning, and nonmyopic active sensing/learning.Singapore-MIT Alliance (Subaward Agreement No. 41)Singapore-MIT Alliance (Subaward Agreement No. 52

    Active Markov Information-Theoretic Path Planning for Robotic Environmental Sensing

    Full text link
    Recent research in multi-robot exploration and mapping has focused on sampling environmental fields, which are typically modeled using the Gaussian process (GP). Existing information-theoretic exploration strategies for learning GP-based environmental field maps adopt the non-Markovian problem structure and consequently scale poorly with the length of history of observations. Hence, it becomes computationally impractical to use these strategies for in situ, real-time active sampling. To ease this computational burden, this paper presents a Markov-based approach to efficient information-theoretic path planning for active sampling of GP-based fields. We analyze the time complexity of solving the Markov-based path planning problem, and demonstrate analytically that it scales better than that of deriving the non-Markovian strategies with increasing length of planning horizon. For a class of exploration tasks called the transect sampling task, we provide theoretical guarantees on the active sampling performance of our Markov-based policy, from which ideal environmental field conditions and sampling task settings can be established to limit its performance degradation due to violation of the Markov assumption. Empirical evaluation on real-world temperature and plankton density field data shows that our Markov-based policy can generally achieve active sampling performance comparable to that of the widely-used non-Markovian greedy policies under less favorable realistic field conditions and task settings while enjoying significant computational gain over them.Comment: 10th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2011), Extended version with proofs, 11 page

    Decentralized Data Fusion and Active Sensing with Mobile Sensors for Modeling and Predicting Spatiotemporal Traffic Phenomena

    Get PDF
    The problem of modeling and predicting spatiotemporal traffic phenomena over an urban road network is important to many traffic applications such as detecting and forecasting congestion hotspots. This paper presents a decentralized data fusion and active sensing (D2FAS) algorithm for mobile sensors to actively explore the road network to gather and assimilate the most informative data for predicting the traffic phenomenon. We analyze the time and communication complexity of D2FAS and demonstrate that it can scale well with a large number of observations and sensors. We provide a theoretical guarantee on its predictive performance to be equivalent to that of a sophisticated centralized sparse approximation for the Gaussian process (GP) model: The computation of such a sparse approximate GP model can thus be parallelized and distributed among the mobile sensors (in a Google-like MapReduce paradigm), thereby achieving efficient and scalable prediction. We also theoretically guarantee its active sensing performance that improves under various practical environmental conditions. Empirical evaluation on real-world urban road network data shows that our D2FAS algorithm is significantly more time-efficient and scalable than state-of-the-art centralized algorithms while achieving comparable predictive performance.Comment: 28th Conference on Uncertainty in Artificial Intelligence (UAI 2012), Extended version with proofs, 13 page

    Gaussian Process Planning with Lipschitz Continuous Reward Functions

    Get PDF
    This paper presents a novel nonmyopic adaptive Gaussian process planning (GPP) framework endowed with a general class of Lipschitz continuous reward functions that can unify some active learning/sensing and Bayesian optimization criteria and offer practitioners some flexibility to specify their desired choices for defining new tasks/problems. In particular, it utilizes a principled Bayesian sequential decision problem framework for jointly and naturally optimizing the exploration-exploitation trade-off. In general, the resulting induced GPP policy cannot be derived exactly due to an uncountable set of candidate observations. A key contribution of our work here thus lies in exploiting the Lipschitz continuity of the reward functions to solve for a nonmyopic adaptive ε-optimal GPP (ε-GPP) policy. To plan in real time, we further propose an asymptotically optimal, branch-and-bound anytime variant of ε-GPP with performance guarantee. We empirically demonstrate the effectiveness of our ε-GPP policy and its anytime variant in Bayesian optimization and an energy harvesting task.Singapore-MIT Alliance for Research and Technology (SMART) (52 R-252-000-550-592

    Gaussian Process Planning with Lipschitz Continuous Reward Functions: Towards Unifying Bayesian Optimization, Active Learning, and Beyond

    Full text link
    This paper presents a novel nonmyopic adaptive Gaussian process planning (GPP) framework endowed with a general class of Lipschitz continuous reward functions that can unify some active learning/sensing and Bayesian optimization criteria and offer practitioners some flexibility to specify their desired choices for defining new tasks/problems. In particular, it utilizes a principled Bayesian sequential decision problem framework for jointly and naturally optimizing the exploration-exploitation trade-off. In general, the resulting induced GPP policy cannot be derived exactly due to an uncountable set of candidate observations. A key contribution of our work here thus lies in exploiting the Lipschitz continuity of the reward functions to solve for a nonmyopic adaptive epsilon-optimal GPP (epsilon-GPP) policy. To plan in real time, we further propose an asymptotically optimal, branch-and-bound anytime variant of epsilon-GPP with performance guarantee. We empirically demonstrate the effectiveness of our epsilon-GPP policy and its anytime variant in Bayesian optimization and an energy harvesting task.Comment: 30th AAAI Conference on Artificial Intelligence (AAAI 2016), Extended version with proofs, 17 page
    corecore