585 research outputs found

    An information theory based behavioral model for agent-based crowd simulations

    Get PDF
    Crowds must be simulated believable in terms of their appearance and behavior to improve a virtual environment’s realism. Due to the complex nature of human behavior, realistic behavior of agents in crowd simulations is still a challenging problem. In this paper, we propose a novel behavioral model which builds analytical maps to control agents’ behavior adaptively with agent-crowd interaction formulations. We introduce information theoretical concepts to construct analytical maps automatically. Our model can be integrated into crowd simulators and enhance their behavioral complexity. We made comparative analyses of the presented behavior model with measured crowd data and two agent-based crowd simulators

    Sampling-Based Motion Planning Using Predictive Models

    Get PDF
    Robotic motion planning requires configuration space exploration. In high-dimensional configuration spaces, a complete exploration is computationally intractable. Practical motion planning algorithms for such high-dimensional spaces must expend computational resources in proportion to the local complexity of configuration space regions. We propose a novel motion planning approach that addresses this problem by building an incremental, approximate model of configuration space. The information contained in this model is used to direct computational resources to difficult regions, effectively addressing the narrow passage problem by adapting the sampling density to the complexity of that region. In addition, the expressiveness of the model permits predictive edge validations, which are performed based on the information contained in the model rather then by invoking a collision checker. Experimental results show that the exploitation of the information obtained through sampling and represented in a predictive model results in a significant decrease in the computational cost of motion planning

    Interaction Templates for Multi-Robot Systems

    Get PDF
    This work describes a framework for multi-robot problems that require or utilize interactions between robots. Solutions consider interactions on a motion planning level to determine the feasibility and cost of the multi-robot team solution. Modeling these problems with current integrated task and motion planning (TMP) approaches typically requires reasoning about the possible interactions and checking many of the possible robot combinations when searching for a solution. We present a multi-robot planning method called Interaction Templates (ITs) which moves certain types of robot interactions from the task planner to the motion planner. ITs model interactions between a set of robots with a small roadmap. This roadmap is then tiled into the environment and connected to the robots’ individual roadmaps. The resulting combined roadmap allows interactions to be considered by the motion planner. We apply ITs to homogeneous and heterogeneous robot teams under both required and optional cooperation scenarios which previously required a task planning method. We show improved performance over a current TMP planning approach

    Incremental Sampling-based Algorithms for Optimal Motion Planning

    Full text link
    During the last decade, incremental sampling-based motion planning algorithms, such as the Rapidly-exploring Random Trees (RRTs) have been shown to work well in practice and to possess theoretical guarantees such as probabilistic completeness. However, no theoretical bounds on the quality of the solution obtained by these algorithms have been established so far. The first contribution of this paper is a negative result: it is proven that, under mild technical conditions, the cost of the best path in the RRT converges almost surely to a non-optimal value. Second, a new algorithm is considered, called the Rapidly-exploring Random Graph (RRG), and it is shown that the cost of the best path in the RRG converges to the optimum almost surely. Third, a tree version of RRG is introduced, called the RRT∗^* algorithm, which preserves the asymptotic optimality of RRG while maintaining a tree structure like RRT. The analysis of the new algorithms hinges on novel connections between sampling-based motion planning algorithms and the theory of random geometric graphs. In terms of computational complexity, it is shown that the number of simple operations required by both the RRG and RRT∗^* algorithms is asymptotically within a constant factor of that required by RRT.Comment: 20 pages, 10 figures, this manuscript is submitted to the International Journal of Robotics Research, a short version is to appear at the 2010 Robotics: Science and Systems Conference
    • …
    corecore