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Sampling-Based Motion Planning
Using Predictive Models

Brendan Burns Oliver Brock
Laboratory for Perceptual Robotics

Department of Computer Science
University of Massachusetts Amherst

Abstract— Robotic motion planning requires configuration
space exploration. In high-dimensional configuration spaces,
a complete exploration is computationally intractable. Prac-
tical motion planning algorithms for such high-dimensional
spaces must expend computational resources in proportion
to the local complexity of configuration space regions. We
propose a novel motion planning approach that addresses
this problem by building an incremental, approximate model
of configuration space. The information contained in this
model is used to direct computational resources to difficult
regions, effectively addressing the narrow passage problem
by adapting the sampling density to the complexity of that
region. In addition, the expressiveness of the model permits
predictive edge validations, which are performed based on
the information contained in the model rather then by
invoking a collision checker. Experimental results show that
the exploitation of the information obtained through sampling
and represented in a predictive model results in a significant
decrease in the computational cost of motion planning.

I. INTRODUCTION

Complete motion planning requires understanding a
robot’s configuration space. The acquisition of such an
understanding is computationally challenging. The general
motion planning problem has been shown to be PSPACE
complete [18]. Sampling-based motion planning meth-
ods [12], [14] address this difficulty by constructing a con-
nectivity graph which implicitly approximates the structure
of the configuration space, thus minimizing exploration.
However, even sampling-based methods can require an
exponential number of uniformly placed samples to build
a representation of configuration space [20].

Uniform sampling, which forms the basis of almost all
multi-query sampling-based motion planning approaches,
makes the implicit assumption that configuration space is
uniformly complex. As a consequence, a motion planner
using uniform sampling must expend on every region of
configuration space, the amount of computation required
by the most complex region. This shortcoming of uniform
sampling is generally referred to as the “narrow passage
problem” [9]. A great deal of research in sampling-based
motion planning is concerned with the resolution of this
problem [1], [4], [8], [10]. The approaches proposed in the
literature so far use heuristics to filter configurations after
examination in the configuration space but prior to insertion
into the roadmap.

In this paper we introduce a novel motion planning tech-
nique, called model-based motion planning. This technique
is motivated by the insight that an efficient, practical motion
planner has to exploit the structure inherent in a particular
problem instance to avoid the computational complexity
of the general motion planning problem. This new ap-
proach incrementally constructs and refines an approximate
statistical model of the entire configuration space. The
model indicates the areas of configuration space which are
complex and the areas which are simple. This information
is used to bias sampling toward difficult regions. As areas
of configuration space become understood, i.e., the model
represents them accurately, they receive no further sam-
pling. Consequently, the proposed planner expends com-
putational resources in proportion to the local complexity
of configuration space regions, effectively addressing the
narrow passage problem.

The approximate model built by model-based motion
planners is also capable of making predictions about un-
explored parts of the configuration space. The proposed
model-based motion planner takes advantage of these pre-
dictions to build predictive roadmaps. Predictive roadmaps
avoid unnecessary invocations of a collision checker for
edge validation when the model can predict the state of the
edge with high confidence. Exploiting predictions from the
model greatly reduces the computational cost of roadmap
construction.

Experimental results show that the proposed model-
based method is outperforms existing sampling-based mo-
tion planners for motion planning problems in relatively
high-dimensional configuration spaces.

II. RELATED WORK

A. Motion Planning

All global motion planners require a model of configu-
ration space [13]. Due to the computational complexity of
modeling configuration space obstacles exactly, however,
the most efficient techniques for motion planning construct
approximate models by sampling configuration space. The
probabilistic roadmap (PRM) method [12] constructs a
sample based roadmap of configuration space. Because
uniform sampling is used to construct the roadmap, PRM
planners must sample the entire configuration space with



the density required by the most complex area of configura-
tion space. This presents a serious computational challenge
when the configuration space contains narrow passages [9].
Much of the research in sampling-based motion planning
over the last decade has focused on the design of sampling
strategies to address the narrow passage problem.

Some approaches attempt to find points near obstacles,
noting that they are more likely to be in narrow passages.
These methods use heuristics based on obstacle surface
properties [1] or shrinking and growing obstacles [9] to
modify colliding samples into free ones. This process can
be computationally expensive and, even for points near
obstacles, the minority of them are actually in narrow
passages.

The computational cost of building large roadmaps with
numerous edges leads to sampling strategies that attempt
to minimize unnecessary samples. The Gaussian sampling
strategy [4] and the bridge test [8] ensure that most con-
figurations in the roadmap are close to obstacles or lie in-
side a narrow passages, respectively. Visibility-based PRM
planners [19] minimize the number of samples inserted
into the roadmap by ensuring that randomly generated
configurations are not redundant with milestones already
present in the roadmap. In a different approach, Fuzzy
PRM planners [17] reduce the number of necessary edge
validations by estimating their probability of being free.
The probability of an edge is estimated by a calculation
based upon the length of the edge. The Fuzzy PRM graph
bears a passing resemblance to the predictive roadmap, but
the Fuzzy PRM approach eventually validates every edge
and its approximations of edge probabilities are not based
on observations of the configuration space.

The methods discussed so far are classified as multi-
query approaches. Single-query methods avoid exploration
of the entire configuration space by searching for a single
path. Lazy PRM planners [3] bias exploration toward re-
gions close the the initial and final configurations. Rapidly
exploring random trees (RRTs) [14] use simulated diffusion
to build a connectivity trees in configuration space connect-
ing start and goal configurations. The approach of diffusion
is also taken by expansive spaces [10], an approach quite
similar to RRTs.

The entropy-guided motion planning approach [5] main-
tains an approximate representation of connected compo-
nents of the roadmap to influence the selection of config-
urations lying between these components. Entropy-guided
motion planners demonstrate that exploiting the informa-
tion represented in expressive models can significantly
reduce the computational requirements of motion planning.

More recently, machine learning techniques have been
employed in the context of motion planning. In particular,
learning techniques have been used to determine which
motion planner is applicable to a particular region of con-
figuration space [16] and to adapt the mixture of a number
of sampling strategies during roadmap construction [11].

B. Machine Learning

The task of building an approximate model of config-
uration space can be viewed as a classification task, in
which points in configuration space are classified as free
or obstructed. The machine learning literature provides
numerous algorithms for classification [15]. In the context
of this paper we limit the discussion to our chosen tech-
nique of locally weighted regression [2]. Locally weighted
regression is an efficient approach to modeling arbitrary
functions based on samples. The approach has a number
of attractive features for approximating configuration space.
Models based on locally weighted regression are locally
adaptive to the structure of the underlying function, their
training cost is constant, regardless of the number of
training examples, and an efficiently computable closed
form derivation of an active learning strategy [7] exists.

Active learning considers the task of learning from
examples when the learner can select the data from which
it learns. Active learning selects examples which maximize
the accuracy of the resulting learner. Modeling config-
uration space is an active learning situation since any
configuration can be examined by the collision checker. We
use the derivation of an active learner for locally weighted
regression presented by Cohn et al. [7]. Further details
concerning locally weighted regression and active learning
are given in Section III-A.

III. MODEL-BASED MOTION PLANNING

To build a computationally efficient sampling-based mo-
tion planner we propose the use of an approximate model
of the entire configuration space. This approximate model
is constructed incrementally, as a solution to the motion
planning problem is computed. The sampling strategy
associated with such a model uses information from the
model to adapt sampling densities in proportion to an
area’s complexity. Complex regions, which by definition
are more difficult for the model to understand, will be
sampled densely, while areas which are easy to represent
are sampled sparsely.

The approximate model also provides predictions about
unexplored regions of configuration space. Predictions re-
quire significantly less computation than the invocation
of a the collision checker. By exploiting the predictive
capabilities of the model to reduce the required number of
invocations of the collision checker, a significant reduction
in computational cost of motion planning can be achieved.

A. Underlying Representation

Machine learning traditionally concerns itself with the
approximation of a function f(x) → y where x is the (pos-
sibly multi-dimensional) input, and y is the (possibly multi-
dimensional) classification or prediction. For configuration
space approximation the input x to the function is a point
in configuration space. The output y of the approximating
function is a continuous value in the range [−1, 1]. Training



configurations are labeled with −1 if the configuration is
obstructed and 1 if the configuration is free.

Locally weighted regression [2] (LWR) provides a com-
putationally efficient sample-based model. Given a query
point, locally weighted regression fits a surface to nearby
training points to make a prediction. A distance weighting
function calculates the influence that a particular training
point has on the model’s prediction of the query point.
We have chosen to use a Gaussian function for distance
weighting:

w(x, x′) = e−k(x−x′)(̇x−x′)

The smoothing parameter k adjusts the spread of the
Gaussian. A larger spread incorporates information from
more distant configurations. Following Cohn et al. [7], we
fit a Gaussian distribution to the region surrounding our
query point. The parameters of the Gaussian distribution
fit to the local region are derived below, where x is the
query point whose classification we are interested in and
xi,yi are members of the sets of input and output training
data X,Y .

The means of the Gaussian are calculated as follows:

µx =

∑

i(w(x, xi)xi)
∑

i w(x, xi)
µy =

∑

i(w(x, xi)yi)
∑

i w(x, xi)

The variances of the Gaussian are given by:

σ2
x =

∑

i(w(x, xi)(xi − µx)2)
∑

i w(x, xi)

σ2
y =

∑

i(w(x, xi)(yi − µy)2)
∑

i w(x, xi)

The covariance is:

σxy =

∑

i(w(x, xi)(xi − µx)(yi − µy))
∑

i w(x, xi)

The conditional variance is calculated:

σ2
y|x = σ2

y

σ2
xy

σ2
x

Using this parameterization, we can then calculate the
expected value of the output ŷ. This value is the prediction
for our query point x:

ŷ = µy +
σxy

σ2
x

(x − µx)

The variance of this prediction (σ2
ŷ) is:

σ2
ŷ =

σ2
y|x

(
∑

i w(x, xi))2

(

∑

i

w(x, xi)
2+

(x − µx)2

σ2
x

∑

i

w(x, xi)
2 (xi − µx)2

σ2
x

)

So far we have shown how to use a collection of sam-
ples to construct an approximate model of configuration
space. We now discuss how this model can be constructed
incrementally by placing samples that maximally improve
the model.

B. Sampling Strategy

A sampling-based motion planner has the ability to query
any location in configuration space by invoking a colli-
sion checker. A sampling-based roadmap motion planner
selects configurations to incorporate into a roadmap. The
method of selection is the planner’s sampling strategy.
To be maximally efficient, the sampling strategy should
carefully select samples to accelerate the computation of
a solution path. The field of active learning examines
similar situations in which a machine learning algorithm
can select arbitrary training data. Active learning methods
have been devised to accelerate learning through the selec-
tion of appropriate training data. Our active learning-based
sampling strategy will select configurations that maximize
the improvement of the model. For our purposes, maximal
improvement in the model corresponds to minimizing the
model’s variance. Cohn et al. [7] provide an efficient
method for determining the expected variance of the model.
High model variance corresponds to unreliable predictions
by the model, whereas in low variance means the model
is reliable. By biasing sampling toward regions of which
decrease the variance of the locally weighted regression
model, sampling is directed to complex regions of config-
uration space [6].

The combination of locally weighted regression and
active learning provide a sampling strategy for model-based
motion planning. Whenever a configuration space sample
is required by the motion planner, the sampling strategy
examines the state the approximate model of configuration
space. A configuration that minimizes the expected vari-
ance of the model is selected. The configuration is sampled
and the resulting information is added to the approximate
model of the configuration space. We call this sampling
strategy active sampling.

An experimental validation of the proposed model based
on locally weighted regression and the corresponding active
learning-based sampling technique has shown that this type
of model is capable of representing configuration space
information efficiently and accurately [6].

C. Predictive Edge Validations

Edge validation is one of the most expensive phases of
constructing a traditional roadmap [8] (cf. Figure IV). The
approximate model presented above can be used to predict
whether an edge is free or obstructed. A motion planner
can use this information to determine if the computationally
expensive examination of the edge using a collision checker
is warranted. By avoiding unnecessary edge validations,
the computational cost of motion planning can be reduced
significantly.

To predict if an edge is free or obstructed using locally
weighted regression it is necessary to calculate a new
weight function, w′ which measures contribution of a
sample in the model to the prediction of an edge. This
is determined by the distance to the nearest point on the



edge. For some edge e, and a training point xi, the function
is given by:

w′(e, xi) = e−k(NearestPoint(e,xi)−xi)
2

The function w′ is substituted for w in the equations for the
parameters of the Gaussian detailed earlier in Section III-
A. In order to calculate the prediction (ŷ), the distance
between a point and the mean of the regressed Gaussian is
needed. Again, we substitute the point on the edge nearest
to the mean of the Gaussian (NearestPoint(e, µx) − µx))
and calculate the prediction of ŷ as follows:

ŷ = µy +
σxy

σ2
x

(NearestPoint(e, µx) − µx).

Now that locally weighted regression can give predictions
for a line, we might simply use a single prediction for
an edge. However, this may result in false predictions for
edges that are split between free and obstructed space. Be-
cause prediction averages over the entire edge, the resulting
prediction is uncertain. If the prediction is uncertain, the
edge is divided in half, and each half is recursively tested.
If either half is predicted obstructed, the entire edge is
predicted obstructed, otherwise the entire edge is predicted
free. If the prediction is certain, the original prediction is
returned.

D. A Model-Based Motion Planner

We now describe a model-based motion planner. The
resulting motion planner differs from traditional sampling-
based approaches in the following aspects: Before roadmap
construction begins, an initial approximate model is con-
structed from a small number of configurations selected
uniformly at random. These initial configurations are not
added to the roadmap. Next, the algorithm improves the
model using the model-based sampling strategy (Sec-
tion III-B). Free samples as well as samples in collision
are incorporated into the approximate model. This is an
important distinction from the traditional PRM algorithm,
which discards information from obstructed configurations.
If the chosen configuration is free it is also incorporated
into a predictive roadmap.

The predictive roadmap is another important distinction
between our new planner and traditional PRM methods.
For traditional PRM, more than three-quarters of the time
is spent validating edges. This computational cost is often
unnecessary. Many checked edges are actually redundant.
They could be removed from the final roadmap without
affecting the completeness of the roadmap. The model
used in the proposed approach to motion planning can
provide predictions about the state of unobserved edges
(Section III-C). This enables an alternative to the expensive
construction of a traditional roadmap: a predictive roadmap
whose edges have been validated using the model rather
than a collision checker. Since paths found in the predictive
roadmap have only been predictively validated, a solution

PREDICTIVEMODELBASEDMOTIONPLAN

(INIT, ITERATION, START, END) : PATH

do init times
Select a random configuration x

Add x to the initial data set D

Construct a model M from D

do iteration times
Use active sampling to determine configuration x

Add x to model M

if x is free according to model M

Add x to the roadmap R

foreach xi in the set of its n neighbors
if path between x and xi is free in M

Connect x to xi

return EXTRACTPATH(START, END, R)

EXTRACTPATH(START, END, ROADMAP) : PATH

do
p := DykstraPathPlan(start, end, roadmap)
for each edge e(xi, xj) in p

if e is in collision
resample between xi and xj

and add configurations to roadmap
else

mark e validated
while p is not a valid path
return p

Fig. 1. A predictive model-based motion planner

path obtained from the predictive roadmap still has to be
verified for collisions. We refer to this process as path
extraction.

During the process of path extraction, edges predicted
as free by the model can be found to be obstructed when
validated with a collision checker. In such a case the
edge is removed from the predictive roadmap and repair is
attempted. To repair an edge, configurations in the vicinity
of the invalid edge are sampled and attempts are made to
reconnect the endpoints of the invalid edge through these
now configurations. The process is similar to those used
by others [3], [17], [9]. If the repair process fails, roadmap
construction is resumed until a new candidate path between
start and goal is found. This process repeats until a path is
found (see Figure 1).

The predictive roadmap algorithm marks a middle
ground between multi-query motion planners and single-
query motion planners. The predictive roadmap contains
general but incomplete information relevant to the construc-
tion of any possible path. The verification and repair of
edges in the roadmap as a result of a particular planning
query focuses computation on those areas most relevant
to the solution of that query. The predictive model-based
motion planning approach is ideally suited for dynamic



environments. In the absence of a query, computational
resources are directed toward acquiring an approximate
model of the entire configuration space. Since single-query
approaches do not begin with this approximate informa-
tion, this additional information provided to the predictive
model-based motion planner is expected to outperform
existing single-query methods.

The predictive model-based motion planner distinguishes
itself from existing motion planners in several important
aspects. Model-based motion planners use a more ex-
pressive underlying model than a roadmap to represent
configuration space information. The information contained
in this model is exploited to adapt the local sampling
density to the complexity of the configuration space region
and to make predictions about unexplored regions.

IV. EXPERIMENTAL VALIDATION

The performance of the predictive model-based planner
introduced in Section III-D is compared with traditional
PRM [12] and a motion planner based on the hybrid bridge
test [8]. To differentiate between the effect of the sam-
pling strategy and the predictive roadmap, the model-based
planner was tested with and without predictive roadmaps.
In Figure IV, the model-based planner including active
sampling but no predictive roadmap is labeled “Active”; the
planner described in Section III-D is labeled “Predictive”.

We perform path planning experiments with two sim-
ulated arms with either nine or twelve DOF. The twelve
degree of freedom version of the arm with its initial and
final configuration are shown in Figure 2. Note that the
final configuration of the robot is inside the most confined
region of the workspace. We make the assumption that
the corresponding configuration space region exhibits very
high complexity. If the model-based planner can success-
fully plan for the experimental scenario, it is likely to have
explored the entire configuration space and consequently
will be able to answer subsequent queries in constant time.
By choosing the experimental scenario in this manner, the
difference between the multi-query approach to motion
planning and the hybrid multi-query/single-query nature of
predictive model-based motion planning is minimized. The
experimental results given here therefore represent a fair
comparison.

In our experimental evaluation the four algorithms run
until a successful path between the start and goal positions
is found. In the case of the predictive roadmap, the time
to verify and repair (if necessary) the candidate path in
the predictive roadmap was included in the overall time.
This time is labeled “Path Extraction” in Figure IV, for
the predictive model-based planner, the time labeled “Path
Validation” corresponds to predictive validation in the
model. The times given represent the average performance
over ten runs of each algorithm.

From the results in Figure IV, it can be seen that active
sampling is an improved sampling technique over bridge

Fig. 2. The initial (transparent) and final (solid) configuration of a twelve
degree of freedom arm in the experimental environment.

and uniform sampling. Further, the amount of improve-
ment (around a 40% decrease in time) appears constant
as the degree of freedom increases, suggesting that the
performance may degrade gracefully for motion planning
in very high-dimensional configuration spaces. Adding the
predictive roadmap results in nearly a three times speed-
up. Since the predictive roadmap does its edge checking in
the model, the amount of time it spends checking edges is
significantly less than traditional roadmap approaches. The
predictive roadmap pays a price for the potential inaccuracy
of its roadmap, using a third of its computational time to
perform path verification and repair. This cost is offset by
savings from predictive edge checking.

Lastly, it should be noted that the performance of PRM
with hybrid bridge sampling degrades because it falsely
identifies many configurations as important and enters them
into the roadmap. Since model-based motion planning is
inherently adaptive to each environment, such problems do
not arise.

V. CONCLUSION

We have proposed a novel sampling-based motion plan-
ning approach. Its main distinguishing feature is the un-
derlying representation of configuration space information
used for path planning. We refer to this representation as
a model of configuration space. The model provides an
approximate picture of configuration space that is used to
direct further exploration.

Model-based motion planning adapts the sampling den-
sity to the local complexity of configuration space re-
gions. As a result, computational resources are expended
in proportion to the local difficulty of a configuration
space region. This effectively addresses the narrow passage
problem which has been the focus of much research over
the past decade. The adaptation of the sampling density
is achieved by incrementally sampling uncertain regions
in the model. Every additional sample ensures maximum
expected improvement for the model.



(a) Motion planning with nine degrees of freedom (b) Motion planning with twelve degrees of freedom

Fig. 3. Time to find a successful path for a nine and twelve degree of freedom arm as a percentage of PRM with uniform sampling and the percentage
of the time taken by each algorithmic component of sampling-based motion planning.

Model-based motion planning is capable of avoiding
expensive configuration space exploration. The model can
be efficiently queried for predictions about the state of an
edge based on proximal observed samples. This generaliza-
tion across samples significantly increases the information
gained from each examination of configuration space and
results in greater efficiency. These predictions give rise to
the predictive roadmap, a middle ground between single
and multi-query approaches which minimizes unnecessary
(and expensive) edge checks.

Model-based motion planning represents a middle
ground between multi- and single-query approaches. It
rapidly builds an approximate representation of the entire
configuration space which is refined using information
provided by a specific query.

Experiments demonstrate the effectiveness of the pro-
posed predictive model-based approach to path planning,
relative to other sampling-based motion planning tech-
niques.
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