52,638 research outputs found

    Detecting and Estimating Signals over Noisy and Unreliable Synapses: Information-Theoretic Analysis

    Get PDF
    The temporal precision with which neurons respond to synaptic inputs has a direct bearing on the nature of the neural code. A characterization of the neuronal noise sources associated with different sub-cellular components (synapse, dendrite, soma, axon, and so on) is needed to understand the relationship between noise and information transfer. Here we study the effect of the unreliable, probabilistic nature of synaptic transmission on information transfer in the absence of interaction among presynaptic inputs. We derive theoretical lower bounds on the capacity of a simple model of a cortical synapse under two different paradigms. In signal estimation, the signal is assumed to be encoded in the mean firing rate of the presynaptic neuron, and the objective is to estimate the continuous input signal from the postsynaptic voltage. In signal detection, the input is binary, and the presence or absence of a presynaptic action potential is to be detected from the postsynaptic voltage. The efficacy of information transfer in synaptic transmission is characterized by deriving optimal strategies under these two paradigms. On the basis of parameter values derived from neocortex, we find that single cortical synapses cannot transmit information reliably, but redundancy obtained using a small number of multiple synapses leads to a significant improvement in the information capacity of synaptic transmission

    Speech Transmission Index from running speech : a neural network approach

    Get PDF
    Speech Transmission Index (STI) is an important objective parameter concerning speech intelligibility for sound transmission channels. It is normally measured with specific test signals to ensure high accuracy and good repeatability. Measurement with running speech was previously proposed, but accuracy is compromised and hence applications limited. A new approach that uses artificial neural networks to accurately extract the STI from received running speech is developed in this paper. Neural networks are trained on a large set of transmitted speech examples with prior knowledge of the transmission channels' STIs. The networks perform complicated nonlinear function mappings and spectral feature memorization to enable accurate objective parameter extraction from transmitted speech. Validations via simulations demonstrate the feasibility of this new method on a one-net-one-speech extract basis. In this case, accuracy is comparable with normal measurement methods. This provides an alternative to standard measurement techniques, and it is intended that the neural network method can facilitate occupied room acoustic measurements

    Path mutual information for a class of biochemical reaction networks

    Full text link
    Living cells encode and transmit information in the temporal dynamics of biochemical components. Gaining a detailed understanding of the input-output relationship in biological systems therefore requires quantitative measures that capture the interdependence between complete time trajectories of biochemical components. Mutual information provides such a measure but its calculation in the context of stochastic reaction networks is associated with mathematical challenges. Here we show how to estimate the mutual information between complete paths of two molecular species that interact with each other through biochemical reactions. We demonstrate our approach using three simple case studies.Comment: 6 pages, 2 figure

    Influence of a Random Telegraph Process on the Transport through a Point Contact

    Full text link
    We describe the transport properties of a point contact under the influence of a classical two-level fluctuator. We employ a transfer matrix formalism allowing us to calculate arbitrary correlation functions of the stochastic process by mapping them on matrix products. The result is used to obtain the generating function of the full counting statistics of a classical point contact subject to a classical fluctuator, including extensions to a pair of two-level fluctuators as well as to a quantum point contact. We show that the noise in the quantum point contact is a sum of the (quantum) partitioning noise and the (classical) noise due to the two-level fluctuator. As a side result, we obtain the full counting statistics of a quantum point contact with time-dependent transmission probabilities.Comment: 8 pages, 2 figure; a new section about experiments and a figure showing the crossover from sub- to superpoissonian noise have been adde

    Harnessing machine learning for fiber-induced nonlinearity mitigation in long-haul coherent optical OFDM

    Get PDF
    © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Coherent optical orthogonal frequency division multiplexing (CO-OFDM) has attracted a lot of interest in optical fiber communications due to its simplified digital signal processing (DSP) units, high spectral-efficiency, flexibility, and tolerance to linear impairments. However, CO-OFDM’s high peak-to-average power ratio imposes high vulnerability to fiber-induced non-linearities. DSP-based machine learning has been considered as a promising approach for fiber non-linearity compensation without sacrificing computational complexity. In this paper, we review the existing machine learning approaches for CO-OFDM in a common framework and review the progress in this area with a focus on practical aspects and comparison with benchmark DSP solutions.Peer reviewe
    corecore