5,017 research outputs found

    Analysis of Sparse MIMO Radar

    Full text link
    We consider a multiple-input-multiple-output radar system and derive a theoretical framework for the recoverability of targets in the azimuth-range domain and the azimuth-range-Doppler domain via sparse approximation algorithms. Using tools developed in the area of compressive sensing, we prove bounds on the number of detectable targets and the achievable resolution in the presence of additive noise. Our theoretical findings are validated by numerical simulations

    Interactive Camera Network Design using a Virtual Reality Interface

    Full text link
    Traditional literature on camera network design focuses on constructing automated algorithms. These require problem specific input from experts in order to produce their output. The nature of the required input is highly unintuitive leading to an unpractical workflow for human operators. In this work we focus on developing a virtual reality user interface allowing human operators to manually design camera networks in an intuitive manner. From real world practical examples we conclude that the camera networks designed using this interface are highly competitive with, or superior to those generated by automated algorithms, but the associated workflow is much more intuitive and simple. The competitiveness of the human-generated camera networks is remarkable because the structure of the optimization problem is a well known combinatorial NP-hard problem. These results indicate that human operators can be used in challenging geometrical combinatorial optimization problems given an intuitive visualization of the problem.Comment: 11 pages, 8 figure

    Physical Primitive Decomposition

    Full text link
    Objects are made of parts, each with distinct geometry, physics, functionality, and affordances. Developing such a distributed, physical, interpretable representation of objects will facilitate intelligent agents to better explore and interact with the world. In this paper, we study physical primitive decomposition---understanding an object through its components, each with physical and geometric attributes. As annotated data for object parts and physics are rare, we propose a novel formulation that learns physical primitives by explaining both an object's appearance and its behaviors in physical events. Our model performs well on block towers and tools in both synthetic and real scenarios; we also demonstrate that visual and physical observations often provide complementary signals. We further present ablation and behavioral studies to better understand our model and contrast it with human performance.Comment: ECCV 2018. Project page: http://ppd.csail.mit.edu

    On the Control of Distributed Parameter Systems using a Multidimensional Systems Setting

    No full text
    The unique characteristic of a repetitive process is a series of sweeps, termed passes, through a set of dynamics defined over a finite duration with resetting before the start of the each new one. On each pass an output, termed the pass profile is produced which acts as a forcing function on, and hence contributes to, the dynamics of the next pass profile. This leads to the possibility that the output, i.e. the sequence of pass profiles, will contain oscillations which increase in amplitude in the pass-to-pass direction. Such behavior cannot be controlled by standard linear systems approach and instead they must be treated as a multidimensional system, i.e. information propagation in more than one independent direction. Physical examples of such processes include long-wall coal cutting and metal rolling. In this paper, stability analysis and control systems design algorithms are developed for a model where a plane, or rectangle, of information is propagated in the passto- pass direction. The possible use of these in the control of distributed parameter systems is then described using a fourthorder wavefront equation

    Accurate detection of moving targets via random sensor arrays and Kerdock codes

    Full text link
    The detection and parameter estimation of moving targets is one of the most important tasks in radar. Arrays of randomly distributed antennas have been popular for this purpose for about half a century. Yet, surprisingly little rigorous mathematical theory exists for random arrays that addresses fundamental question such as how many targets can be recovered, at what resolution, at which noise level, and with which algorithm. In a different line of research in radar, mathematicians and engineers have invested significant effort into the design of radar transmission waveforms which satisfy various desirable properties. In this paper we bring these two seemingly unrelated areas together. Using tools from compressive sensing we derive a theoretical framework for the recovery of targets in the azimuth-range-Doppler domain via random antennas arrays. In one manifestation of our theory we use Kerdock codes as transmission waveforms and exploit some of their peculiar properties in our analysis. Our paper provides two main contributions: (i) We derive the first rigorous mathematical theory for the detection of moving targets using random sensor arrays. (ii) The transmitted waveforms satisfy a variety of properties that are very desirable and important from a practical viewpoint. Thus our approach does not just lead to useful theoretical insights, but is also of practical importance. Various extensions of our results are derived and numerical simulations confirming our theory are presented

    On the Collaboration of an Automatic Path-Planner and a Human User for Path-Finding in Virtual Industrial Scenes

    Get PDF
    This paper describes a global interactive framework enabling an automatic path-planner and a user to collaborate for finding a path in cluttered virtual environments. First, a collaborative architecture including the user and the planner is described. Then, for real time purpose, a motion planner divided into different steps is presented. First, a preliminary workspace discretization is done without time limitations at the beginning of the simulation. Then, using these pre-computed data, a second algorithm finds a collision free path in real time. Once the path is found, an haptic artificial guidance on the path is provided to the user. The user can then influence the planner by not following the path and automatically order a new path research. The performances are measured on tests based on assembly simulation in CAD scenes
    corecore