6 research outputs found

    CFO Estimation for OFDM-based Massive MIMO Systems in Asymptotic Regime

    Get PDF
    Massive multiple input multiple output (MIMO) plays a pivotal role in the fifth generation (5G) wireless networks. However, the carrier frequency offset (CFO) estimation is a challenging issue in the uplink of multi-user massive MIMO systems. In fact, frequency synchronization can impose a considerable amount of computational complexity to the base station (BS) due to a large number of BS antennas. In this paper, thanks to the properties of massive MIMO in the asymptotic regime, we develop a simple synchronization technique and derive a closed form equation for CFO estimation. We show that the phase information of the covariance matrix of the received signals is solely dependent on the users’ CFOs. Hence, if a real-valued pilot is chosen, the CFO values can be straightforwardly calculated from this matrix. Hence, there is no need to deal with a complex optimization problem like the other existing CFO estimation techniques in the literature. Our simulation results testify the efficacy of our proposed CFO estimation technique. As we have shown, the performance of our method does not deteriorate as the number of users increases

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    Temperature aware power optimization for multicore floating-point units

    Full text link

    Shortest Route at Dynamic Location with Node Combination-Dijkstra Algorithm

    Get PDF
    Abstract— Online transportation has become a basic requirement of the general public in support of all activities to go to work, school or vacation to the sights. Public transportation services compete to provide the best service so that consumers feel comfortable using the services offered, so that all activities are noticed, one of them is the search for the shortest route in picking the buyer or delivering to the destination. Node Combination method can minimize memory usage and this methode is more optimal when compared to A* and Ant Colony in the shortest route search like Dijkstra algorithm, but can’t store the history node that has been passed. Therefore, using node combination algorithm is very good in searching the shortest distance is not the shortest route. This paper is structured to modify the node combination algorithm to solve the problem of finding the shortest route at the dynamic location obtained from the transport fleet by displaying the nodes that have the shortest distance and will be implemented in the geographic information system in the form of map to facilitate the use of the system. Keywords— Shortest Path, Algorithm Dijkstra, Node Combination, Dynamic Location (key words
    corecore