6 research outputs found

    KyberMat: Efficient Accelerator for Matrix-Vector Polynomial Multiplication in CRYSTALS-Kyber Scheme via NTT and Polyphase Decomposition

    Full text link
    CRYSTAL-Kyber (Kyber) is one of the post-quantum cryptography (PQC) key-encapsulation mechanism (KEM) schemes selected during the standardization process. This paper addresses optimization for Kyber architecture with respect to latency and throughput constraints. Specifically, matrix-vector multiplication and number theoretic transform (NTT)-based polynomial multiplication are critical operations and bottlenecks that require optimization. To address this challenge, we propose an algorithm and hardware co-design approach to systematically optimize matrix-vector multiplication and NTT-based polynomial multiplication by employing a novel sub-structure sharing technique in order to reduce computational complexity, i.e., the number of modular multiplications and modular additions/subtractions consumed. The sub-structure sharing approach is inspired by prior fast parallel approaches based on polyphase decomposition. The proposed efficient feed-forward architecture achieves high speed, low latency, and full utilization of all hardware components, which can significantly enhance the overall efficiency of the Kyber scheme. The FPGA implementation results show that our proposed design, using the fast two-parallel structure, leads to an approximate reduction of 90% in execution time, along with a 66 times improvement in throughput performance.Comment: Proc. 2023 IEEE/ACM International Conference on Computer Aided Design (ICCAD), San Francisco, CA, Oct. 29 - Nov. 2, 202

    Bridging the Gap: A Survey and Classification of Research-Informed Ethical Hacking Tools

    Get PDF
    The majority of Ethical Hacking (EH) tools utilised in penetration testing are developed by practitioners within the industry or underground communities. Similarly, academic researchers have also contributed to developing security tools. However, there appears to be limited awareness among practitioners of academic contributions in this domain, creating a significant gap between industry and academia’s contributions to EH tools. This research paper aims to survey the current state of EH academic research, primarily focusing on research-informed security tools. We categorise these tools into process-based frameworks (such as PTES and Mitre ATT&CK) and knowledge-based frameworks (such as CyBOK and ACM CCS). This classification provides a comprehensive overview of novel, research-informed tools, considering their functionality and application areas. The analysis covers licensing, release dates, source code availability, development activity, and peer review status, providing valuable insights into the current state of research in this field

    Deconstructing Blockchains: A Comprehensive Survey on Consensus, Membership and Structure

    Get PDF
    It is no exaggeration to say that since the introduction of Bitcoin, blockchains have become a disruptive technology that has shaken the world. However, the rising popularity of the paradigm has led to a flurry of proposals addressing variations and/or trying to solve problems stemming from the initial specification. This added considerable complexity to the current blockchain ecosystems, amplified by the absence of detail in many accompanying blockchain whitepapers. Through this paper, we set out to explain blockchains in a simple way, taming that complexity through the deconstruction of the blockchain into three simple, critical components common to all known systems: membership selection, consensus mechanism and structure. We propose an evaluation framework with insight into system models, desired properties and analysis criteria, using the decoupled components as criteria. We use this framework to provide clear and intuitive overviews of the design principles behind the analyzed systems and the properties achieved. We hope our effort will help clarifying the current state of blockchain proposals and provide directions to the analysis of future proposals
    corecore