3 research outputs found

    Optimal graph based segmentation using flow lines with application to airway wall segmentation

    Get PDF
    This paper introduces a novel optimal graph construction method that is applicable to multi-dimensional, multi-surface segmentation problems. Such problems are often solved by refining an initial coarse surface within the space given by graph columns. Conventional columns are not well suited for surfaces with high curvature or complex shapes but the proposed columns, based on properly generated flow lines, which are non-intersecting, guarantee solutions that do not self-intersect and are better able to handle such surfaces. The method is applied to segment human airway walls in computed tomography images. Comparison with manual annotations on 649 cross-sectional images from 15 different subjects shows significantly smaller contour distances and larger area of overlap than are obtained with recently published graph based methods. Airway abnormality measurements obtained with the method on 480 scan pairs from a lung cancer screening trial are reproducible and correlate significantly with lung function

    Deep Learning-based Radiomics Framework for Multi-Modality PET-CT Images

    Get PDF
    Multimodal positron emission tomography - computed tomography (PET-CT) imaging is widely regarded as the imaging modality of choice for cancer management. This is because PET-CT combines the high sensitivity of PET in detecting regions of abnormal functions and the specificity of CT in depicting the underlying anatomy of where the abnormal functions are occurring. Radiomics is an emerging research field that enables the extraction and analysis of quantitative features from medical images, providing valuable insights into the underlying pathophysiology that cannot be discerned by the naked eyes. This information is capable of assisting decision-making in clinical practice, leading to better personalised treatment planning, patient outcome prediction, and therapy response assessment. The aim of this thesis is to propose a new deep learning-based radiomics framework for multimodal PET-CT images. The proposed framework comprises of three methods: 1) a tumour segmentation method via a self-supervision enabled false positive and false negative reduction network; 2) a constrained hierarchical multi-modality feature learning is constructed to predict the patient outcome with multimodal PET-CT images; 3) an automatic neural architecture search method to automatically find the optimal network architecture for both patient outcome prediction and tumour segmentation. Extensive experiments have been conducted on three datasets, including one public soft-tissue sarcomas dataset, one public challenge dataset, and one in-house lung cancer data. The results demonstrated that the proposed methods obtained better performance in all tasks when compared to the state-of-the-art methods
    corecore