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Abstract 
 
Multimodal positron emission tomography - computed tomography (PET-CT) imaging is 

widely regarded as the imaging modality of choice for cancer management. This is because 

PET-CT combines the high sensitivity of PET in detecting regions of abnormal functions and 

the specificity of CT in depicting the underlying anatomy of where the abnormal functions are 

occurring. 

Radiomics is an emerging research field that enables the extraction and analysis of 

quantitative features from medical images, providing valuable insights into the underlying 

pathophysiology that cannot be discerned by the naked eyes. This information is capable of 

assisting decision-making in clinical practice, leading to better personalised treatment 

planning, patient outcome prediction, and therapy response assessment. 

The aim of this thesis is to propose a new deep learning-based radiomics framework 

for multimodal PET-CT images. The proposed framework comprises of three methods: 1) a 

tumour segmentation method via a self-supervision enabled false positive and false negative 

reduction network; 2) a constrained hierarchical multi-modality feature learning is constructed 

to predict the patient outcome with multimodal PET-CT images; 3) an automatic neural 

architecture search method to automatically find the optimal network architecture for both 

patient outcome prediction and tumour segmentation. 

Extensive experiments have been conducted on three datasets, including one public 

soft-tissue sarcomas dataset, one public challenge dataset, and one in-house lung cancer data. 

The results demonstrated that the proposed methods obtained better performance in all tasks 

when compared to the state-of-the-art methods. 
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Chapter 1. Introduction 
 
 
1.1 Background 

Medical imaging plays an important role in modern healthcare and is indispensable to 

numerous clinical applications, such as disease diagnosis, surgical planning, and therapeutic 

procedures evaluation [1]. The wide range of medical imaging modalities includes digital 

radiography, magnetic resonance imaging (MRI), computed tomography (CT), positron 

emission tomography combined (PET), X-ray, Ultrasound (US), as well as combined imaging 

such as PET-CT and PET-MRI; these modalities provide anatomical and functional 

information about human body’s structure and physiology. Among these modalities, the 

multimodal PET-CT, using radiopharmaceutical F	"# -Fluorodeoxyglucose (FDG) PET, is 

widely considered as the imaging modality of choice for the diagnosis, staging, and evaluation 

of treatment response in many cancers, including lung cancer, lymphoma, and soft-tissue 

sarcomas (STSs) [2]. This is attributed to the fact that PET-CT combines the high sensitivity 

of PET in detecting regions of abnormal functions and the specificity of CT in depicting the 

underlying anatomy of where the abnormal functions are occurring. With PET, sites of the 

disease usually display greater FDG uptake (glucose metabolism) than normal structures. The 

spatial extent of the disease within a particular structure, however, cannot be accurately 
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determined due to tumour heterogeneity, partial volume effect, and the inherent low resolution 

of PET, especially when compared to CT and MRI [3]. Complementarily, CT provides the 

anatomical localization of sites of abnormal FDG uptake in PET as an aid in image 

interpretation [4]. 

 

 

Figure 1.1. One example of lung cancer diagnosed with different imaging modalities. The 

three images from left to right are CT, PET and fused PET-CT images. These images are 

commonly used in cancer assessment. The blue arrows point to the region of lung cancer. 

These PET-CT images are from the public challenge dataset AutoPET [5]. 

 

Most cancers/tumours are not homogeneous, instead, they are generally made up of 

multiple clonal subpopulations of cancer cells. In solid cancerous tumours such as STSs and 

lung cancers, the extent of heterogeneous characteristics is expressed at multiple levels, such 

as genes, proteins and anatomical landmarks within tumours, and they exhibit considerable 

spatial and temporal variations that could potentially provide valuable information about 

CT PET Fused PET-CT
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tumour aggressiveness for patient risk assessment [6]. However, studying tumour 

heterogeneity using histopathological samples from biopsies is very difficult, it is an invasive 

and time-consuming procedure that involves tumour tissue samples collection using biopsy 

needles or during surgical resection, and tissue preparation and staining for histopathological 

examination under a microscope. In addition, the information obtained may vary depending 

on which part of a tumour is sampled, which may not be representative of the entire tumour 

and can miss important areas of heterogeneity [7]. Therefore, the treatment planning, therapy 

response assessment and other prognosis based on histopathological samples may not fully 

account for the complexity and diversity of tumours. This challenge is addressed by an 

emerging translational research field, “radiomics”. The underlying hypothesis of radiomics is 

that the heterogeneous characteristics of tumours could be translated into heterogeneous 

lesion metabolism and anatomy in medical images, such that metabolic and anatomical 

information can be derived and captured via imaging feature extraction and analysis. Unlike 

biopsies, radiomics can capture the heterogeneity information of the entire tumour volume, 

providing a more comprehensive picture of the tumour and its response to treatment, and other 

prognostic information. Thus, radiomics allows for better personalised treatment planning, 

patient outcome prediction, and therapy response assessment [8]. 

Radiomics works by extracting and analysing innumerable features from medical 

images. Through quantitative feature extraction and machine learning modelling, radiomics 

is capable of leveraging much more information from medical images than what can be 

discerned by the naked eye, and such information can provide valuable insights into the 

underlying biological and physiological processes of heterogeneous tumours so as to assist 

decision-making in clinical practice [9]. Radiomics not only visually interpret these images, 

but also capture information that is relevant to diagnosis and prognosis [10]. With the 

predictive power for personalised treatment planning and patient outcomes prediction (e.g., 
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distant metastases prediction, survival analysis), radiomics exhibits promising potential in 

cancer-related research [11]. Conventional radiomics methods consist of four main steps (see 

Figure 1.2): (i) image acquisition/reconstruction, (ii) manual segmentation and annotation of 

regions of interest (ROIs, e.g., tumours), (iii) extracting hand-crafted radiomics features (e.g., 

intensity, texture, shape) and, (iv) building predictive models, such as support vector 

machines (SVM), regression models, etc., to correlate extracted features with the clinical 

outcomes (e.g., distant metastases, overall survival, etc). Although conventional radiomics 

has been used in many different applications with various medical images [6], [7], [12]–[14], 

their performance relies on a prior skillset in accurate tumour delineation, radiomics features 

definition and extraction, and manual tuning of numerous predictive model parameters. As a 

result, these studies could introduce human bias and lack the capacity to comprehend high-

level semantic information.  

 

 

Figure 1.2. The main steps of conventional radiomics. (a) image acquisition / reconstruction, 

(b) region of interest segmentation, (c) radiomic features extraction, and (d) statistical analysis 

and modelling. The PET-CT images are from the public challenge dataset AutoPET [5]. 

 

The increase in radiomics performance is closely associated with recent advances in 

deep learning that have enabled data-driven approaches for automated image feature 

quantification. The convolutional neural network (CNN) is one of the most widely used 

techniques in medical image analysis and has inspired a shift from conventional radiomics 

(a) (b) (c) (d)
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analysis toward CNN-based radiomics analysis. This is attributed to the CNN’s ability to 

extract high-level semantic information in an end-to-end manner that is meaningful to the 

specific task (e.g., tumour or organ segmentation, patient outcome prediction, etc.), which 

reduces the need for prior knowledge in hand-crafted radiomics features definition and other 

manual input [15], [16]. Several studies have shown that deep radiomics features extracted 

from CNN achieved promising performance in outcome prediction for head-and-neck cancer 

patients, neoadjuvant chemoradiation response prediction for locally advanced rectal cancer 

patients [17], preoperative meningiomas grading [18], and glioblastoma multiforme survival 

prediction [19]. However, these approaches were designed for single-modality medical 

images, and they fail to fully exploit the potential of CNN to capture complementary 

information from multiple combined imaging modalities. Although there is a limited number 

of CNN-based radiomics studies where the multimodal PET-CT images were utilized, they 

are hybrid methods combining conventional radiomics components and deep learning-based 

radiomics [20]–[22], and their focus is to utilise both conventional radiomics features and deep 

radiomics features extracted from CNNs for clinical applications, rather than advancing the 

technical usage of CNN for radiomics. As a result, these methods suffer from similar 

limitations of conventional radiomics methods in prior knowledge about feature definition 

and extraction, and these methods fail to fully utilise the potential of CNNs in capturing 

complementary information from multimodal medical images.  

Another challenge in the field of radiomics is the scarcity of manual annotation of ROIs, 

especially for multimodal PET-CT images, which is an important prerequisite to support 

patient outcome prediction in radiomics [23]. Conventional radiomics studies rely on tumour 

annotations to quantify imaging features for specific diseases. Similarly, most of the existing 

CNN-based radiomics models utilised the annotated primary tumour regions as the input to 

reduce interference from non-relevant background information. However, tumour annotation 
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in PET-CT images remains a challenging task due to the large cost and complicated 

acquisition procedures. Specifically, one of the main difficulties in using PET images is 

determining the spatial extent of the tumour due to the lower resolution and signal-to-noise 

ratio of PET in comparison to CT. Furthermore, increased FDG uptake can also be observed 

in normal structures, such as the heart, and kidneys, and sites of inflammation (e.g., 

pneumonitis) [24], which can lead to over-segmentation of tumour region with false positive 

segmentation errors. Additionally, some well-differentiated tumours may not exhibit high 

FDG uptake, making them difficult to detect in PET images alone. Moreover, the task of 

automated PET-CT tumour segmentation requires consideration of complementary features 

from both modalities. The optimal extraction and utilization of data from multimodal PET-

CT images in radiomics have not been fully explored in comparison to unimodal imaging 

problems [25]. 

Although CNN-based methods have become state-of-the-art in radiomics, existing 

CNNs for patient outcome prediction and its important prerequisite automated tumour 

segmentation are still heavily dependent on human expertise to design dataset-specific CNN 

architectures, such as the number of convolutional layers and the structure of convolutional 

blocks. CNN architecture design and optimisation necessitate a large amount of domain 

knowledge, such as in validating the architecture performance and tuning the 

hyperparameters. To address this limitation, neural architecture search (NAS) has recently 

been proposed to simplify the challenges in architecture design by automatically searching 

for an optimal network architecture based on a given dataset. Hence, NAS is capable of 

minimising manual input and reliance on prior knowledge in architecture design and network 

finetuning for different tasks and datasets [26]. While a small number of investigators have 

attempted to apply NAS for medical image analysis with single modality imaging data [27], 

[28], the usage of NAS regarding multimodal medical images adds a higher level of 
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complexity and has not yet been explored, and the task complexity is further compounded 

when multiple imaging modalities (e.g., PET-CT), are included in the analysis. 

 

1.2 Contributions of this Thesis 

The overall aim of this thesis is to introduce a new deep learning enabled radiomics 

framework for multimodal PET-CT images. In this thesis, new CNNs have been designed and 

implemented to automatically learn the complementary characteristics from different image 

modalities for two important tasks in deep learning-based radiomics: (1) predictive model 

construction, and (2) tumour segmentation to support the patient outcome prediction. When 

compared with existing studies, the following are the innovative methods and contributions 

made in the thesis: 

1) A new Self-supervision enabled False positive and false negative Reduction Network 

(SFRN) is proposed for tumour segmentation in multimodal PET-CT images. Initially, 

a global segmentation module was employed to coarsely delineate candidate tumour 

regions. Then, the candidate tumour regions were refined at the pixel level by 

removing both false positives and false negatives using a local refinement module. A 

classification branch is further incorporated to enhance the ability of our network to 

distinguish the tumour regions from healthy regions in multimodal PET-CT images, 

thus further improving the ability to alleviate the two types of segmentation errors 

introduced by the global segmentation module. The SFRN outperformed the state-of-

the-art segmentation methods on two multimodal PET-CT datasets (one public STS 

dataset and one in-house lung cancer data). 

2) A new constrained hierarchical multimodal feature learning method, hereby denoted 

as CHMFL, is proposed for patient outcome prediction in radiomics with multimodal 



11  

PET-CT images. In this method, a constrained feature learning (CFL) module was 

used to spatially guide the learning process to focus on the important semantic regions 

(e.g., tumours). The formulation of this module means that it can target the functional 

hot spots with high FDG uptake in PET within the anatomical context of CT. A 

hierarchical multimodal feature learning (HMFL) module is also designed to derive 

optimal radiomics features by integrating complementary features across modalities 

at different scales. The formulation of HMFL combined multimodal features from 

different scales in an iterative manner and enabled a more comprehensive and flexible 

fusion of PET and CT features, e.g., low-level PET texture features from a shallow 

layer with semantic CT features from a deeper layer. The proposed method was 

evaluated in predicting the development of distant metastases on a well-established 

benchmark STSs PET-CT dataset, and the experimental results showed that our 

method achieved overall better performance when compared to the state-of-the-art 

methods. 

3) A new Multimodal NAS (MM-NAS) method is proposed to search for a multimodal 

CNN architecture for use in PET-CT radiomics studies. The proposed method was 

able to find various fusion modules e.g., fusion via different network operations (e.g., 

convolution, pooling, etc.) at different stages of the network. These searched fusion 

modules provided more flexible options for integrating the complementary PET and 

CT data without prior knowledge in architecture design and human input for 

hyperparameter tuning. The proposed method was capable of building an optimal, 

fully automated radiomics CNN architecture and enabled an optimal fusion of 

multimodal PET-CT images for radiomics. The proposed MM-NAS was evaluated 

for its ability to predict distant metastases of STSs as well as to segment STSs and 

lung cancer. The experimental results showed that the MM-NAS obtained overall 



12  

better performance when compared to the state-of-the-art methods. 

 

1.3 Thesis Organizations 

The rest of this thesis is organized as follows. The related works of radiomics are discussed 

in Chapter 2. The proposed methods are described in the following three chapters. A self-

supervision enabled false positive and false negative reduction network is introduced in 

Chapter 3. The constrained hierarchical multimodal feature learning method is introduced in 

Chapter 4. Chapter 5 presents the multimodal NAS method of automatically searching for a 

multimodal CNN architecture in the PET-CT radiomics framework. Finally, the contributions 

of this thesis are summarised and the directions for future work are presented in Chapter 6. 



 
 
Chapter 2. Related Works 
 
 
In this chapter, the related works relevant to this thesis are discussed. This chapter begins with 

the introduction of various medical imaging modalities that are used in this thesis. This is 

followed by different radiomics methods and corresponding challenges in this research field. 

The gaps in existing studies will also be summarised. In the methodology Chapters 3-5, where 

appropriate, specific related works will be highlighted, by referring to Chapter 2. 

 

2.1 Medical Imaging 

A variety of different medical imaging modalities are routinely used as part of clinical patient 

management, including digital radiography, magnetic resonance imaging (MRI), computed 

tomography (CT), positron emission tomography combined (PET), X-ray, Ultrasound (US), as 

well as combined imaging such as PET-CT and PET-MRI. These modalities provide different 

insights into the condition of diseases, such as anatomical and functional information about human 

body’s structure and physiology. In this thesis, the imaging data of CT, PET, and multimodal 

PET-CT are mainly used, which are further explained as followed. 

 

2.1.1 Computed Tomography  
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Computed tomography (CT) is a medical imaging technique that utilises a computerised x-ray 

imaging procedure to generate detailed images of all parts of the body including the bones, 

muscles, fat, organs and blood vessels. This technique employs a series of narrow beams of x-

rays that pass through the body from different angles and are detected by highly sensitive 

detectors [29]. Then the acquired 2D slices or tomograms are combined to form a 3D CT 

imaging volume. CT allows physicians to visualise internal organs in a non-invasive manner. 

Unlike traditional x-ray imaging, the images produced by CT scanners do not superimpose 

structures on each other. CT scanners are also capable of capturing images with high spatial 

resolutions, potentially less than 1mm per dimension.  

Three slices from different planes of the same CT volume with soft-tissue sarcoma (STS) 

are shown in Figure 2.1. The differences in voxel intensities can be clearly seen by the high-

intensity values of the bones (in white) in all slices, the low intensity of the air within the lungs in 

(b) and (c) of Figure 2.1, and the intensity of the soft tissues (STS, liver, etc.) in all slices. 

 

 

Figure 2.1. Slices from different view planes of the same CT volume. These CT images are 

from the public challenge dataset AutoPET [5]. 

(a) Axial View (b) Sagittal View (c) Coronal View
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As detailed parts of the body including the bones, muscles, fat, organs and blood vessels 

can be generated in the CT images via a computerised x-ray imaging procedure with high 

spatial resolutions, CT images are primarily utilised in the identification and examination of 

anatomical conditions in clinical practice, such as the assessment of airway obstruction in 

patients with obstructive sleep apnoea [30] or the evaluation of emphysema [31]. Additionally, 

CT images are useful for measuring tumour growth [32] and the determination of lung nodule 

growth rates [33]. Unfortunately, benign and malignant tumours typically present comparable 

Hounsfield Unit (HU) values with the soft tissues on CT images. Therefore, the detection and 

visualization of tumours utilising solely CT images present a significant challenge, and a 

different procedure, such as biopsy or alternative imaging modalities such as the positron 

emission tomography (PET, refer to Section 2.1.2) is usually required. 

 

2.1.2 Positron Emission Tomography 

Positron emission tomography (PET) is a nuclear medicine imaging technique that produces 

functional images by detecting the gamma rays emitted from a positron-emitting radiotracer that 

has been introduced into the subject's body [34]. This technique constructs greyscale volumetric 

images of the target tissue or organ, providing valuable insights into metabolic activity, blood 

flow, and other physiological processes. In this thesis, only studies with PET images using F	"# -

Fluorodeoxyglucose (FDG) as the radiotracer are investigated, which is widely used for cancer 

patients [35]. 

Voxel intensity in an FDG-PET image indicates glucose metabolism at the corresponding 

location in the body, and this is instrumental in characterising the nature of lesions, where 

malignant tumours have abnormally high intensities [36]. Hence, FDG-PET images exhibit a 

diagnostic and prognostic accuracy between 80-90%, and they outperform anatomical imaging 
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techniques like CT in detecting malignant cancers [37]. Nonetheless, FDG-PET images are in 

lower spatial resolution and lower signal-to-noise ratio (SNR) when compared to modalities like 

CT [38]. As a result, noise and limited anatomical information in PET hinders the precise 

localisation of lesions [37]. 

 

 

Figure 2.2. Slices from different planes of the same PET volume. Apart from the STS region, 

all other high-intensity regions correspond to areas with naturally occurring high glucose 

metabolism regions, e.g., the heart (see the top middle within (b) and (c)), and bladder (see the 

small black region above STS within (b) and (c)). These PET images are from the public 

challenge dataset AutoPET [5]. 

 

Figure 2.2 shows three slices from different planes of the same FDG-PET volume with an 

STS patient. The black region of high intensity in the right leg is the primary STS tumour which 

can be seen in all three slices. All other high-intensity regions correspond to areas with naturally 

occurring high glucose metabolism regions, e.g., the heart (see the top middle within (b) and (c) 

in Figure 2.2), and bladder (see the small black region above STS within (b) and (c) in Figure 2.2), 

the normal regions are pointed by the blue arrows in Figure 2.2.  

(a) Axial View (b) Sagittal View (c) Coronal View
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Moreover, it is important to note that the voxel values in PET images do not inherently 

correspond to any physical characteristics, unlike CT voxel values, which relates to the X-ray 

absorption of different materials, PET voxel values are derived from the measurement of the 

rate of positron annihilation events within a voxel, which is influenced by factors, such as the 

radioactive decay of the injected tracer FDG, the tracer distribution in the body, and the scanner 

characteristics. As a result, this makes the comparison of PET values across different scans 

problematic, even if the scans are of the same patient [39]. The standard uptake value (SUV) 

compensates for this limitation by providing a measure to evaluate the uptake of PET radiotracers 

via normalising the original voxel intensities based on the subject’s body measurements 

information, such as mass or weight, and PET acquisition parameters like dose and time. 

Furthermore, regions with an SUV value higher than a specified value (called the ‘threshold’) are 

identified as regions of interest (ROIs) which are often likely to be tumours [40]. SUV 

thresholding of PET images is one of the fundamental techniques to detect abnormal FDG uptake 

sites before and after treatment [41]. 
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Figure 2.3. The first combined PET-CT prototype at the University of Pittsburgh [42]. 

 

2.1.3 Multimodal PET-CT Imaging 

Both PET and CT scans are important for diagnosis and follow-up in clinical oncology [43]. While 

these scans can be carried out on the same device, local misregistration is observed when simply 

integrating PET and CT imaging [44]. To address this concern and enhance the overall image 

quality, the University of Pittsburgh in 1998 has developed the first combined dual-modality PET-

CT to align two image sets acquired independently (Figure 2.3) [42]. 

Multimodal PET-CT refers to the sequential acquisition of CT and PET volumes in the 

same scanner during the same imaging session [45], [46]. The respective volumes acquired by 

the scanner have different pixel, contrast, and spatial resolutions. Figure 2.4 shows the axial 

images acquired from a combined PET-CT scanner. Figures 2.4(a) and 2.4(b) are the CT and PET 

images, respectively. Figure 2.4(c) depicts the fused image produced after applying scanner 

parameters to transform them to the same coordinate space. 

 

 

Figure 2.4. A Multimodal PET-CT image. These PET-CT images are from the public 

challenge dataset AutoPET [5]. 

 

Combined PET-CT scanners offer numerous advantages over their single modality 

(a) CT (b) PET (c) Fused PET-CT
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counterparts. The total time for image acquisition is significantly shorter, allowing better 

instrument utilisation and a higher patient throughput [47]. Furthermore, studies have shown that 

PET-CT is more sensitive than either PET or CT conducted alone, and that combining CT with 

PET improves the sensitivity of PET images [48]. Overall, PET-CT provides improved tumour 

diagnosis, localisation, and staging, compared to single modality PET or CT [47], [48]. The 

clinical importance of PET-CT and the increasing trend of PET adoption indicate that in the very 

near future, all PET studies will be in the form of PET-CT images [37], [49].  

The value of PET-CT arises from its ability to present complementary anatomical (from 

CT) and functional (from PET) information. This is accomplished through the scanner's ability to 

merge the spatial co-alignment of the two modalities, thereby allowing physicians to observe the 

relationship between the anatomical and functional details. Such integration can reveal important 

insights, such as determining whether a lung tumour has invaded an adjacent structure. 

Consequently, an essential challenge for researchers in the field of PET-CT image processing is 

to effectively leverage and maximize the benefits found in these complementary features and 

spatial relationships. 

 

2.2 Radiomics  

Radiomics has emerged as a translational research field in response to the increasing 

availability of medical imaging data and the growing need for personalised, data-driven 

approaches to modern healthcare. Radiomics refers to the extraction and analysis of 

innumerable features from non-invasive medical images. Through quantitative feature 

extraction and predictive model construction, radiomics is capable of capturing and analysing 

additional information from medical images than what can be discerned by the naked eye. 

Such information can provide valuable insights into the underlying biological and 

physiological processes of heterogeneous diseases so as to assist diagnosis (e.g., tumour 
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grading), and prognosis (e.g., distant metastases prediction, survival analysis) in various 

cancers, allowing for more personalised and precise patient care. As the field continues to 

evolve, it is likely that radiomics will play an increasingly important role in integrating image-

derived information to assist clinical decision-making.  

The existing radiomics studies can be categorised into two main categories: (1) 

conventional radiomics methods – where the statistical machine learning methods (e.g., 

random forest, support vector machine, etc.) are utilised to associate patient outcomes (e.g., 

distant metastases, overall survival, etc.) with the hand-crafted features (e.g., intensity, 

texture, shape, etc.) that are extracted from the regions of interest (ROI, e.g., tumours) in 

medical images; (2) deep learning-based radiomics methods – where a deep neural network 

is adopted as the predictive model to directly predict the patient outcomes from the medical 

images in an end-to-end manner. Moreover, the annotation or segmentation of the ROIs is an 

important prerequisite to support the model construction and outcome prediction. The 

following Chapters 3-5 includes further technical details related to the radiomics literature. 

 

2.3 Automated Medical Image Segmentation Methods  

The automated segmentation in radiomics studies with multimodal PET-CT images have 

focused on the delineation of ROIs, which are usually the tumour regions. Various strategies 

for automatic tumour segmentation in PET-CT images have been proposed. Overall, they can 

be categorized into two main types of traditional methods and deep learning counterparts. 

 

2.3.1 Traditional Segmentation Methods 

Thresholding is a classical traditional method used to distinguish tumours from the background 

based on differences in standardized uptake value (SUV) [50]–[52]. The selection of an 

appropriate SUV threshold is crucial in clinical practice, and various thresholds have been 
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employed, ranging from an SUV of >2.5, to 41%-90% of the maximum SUV value in the 

tumour to identify a region of interest [53]. However, the accuracy of thresholding can be 

compromised by normal physiological processes and benign conditions, such as pneumonia, 

exhibiting high FDG uptake while on contrary, some primary tumours may have SUV that is 

less than 2.5. Such SUV variations can lead to both false negative and positive segmentation 

errors. Furthermore, several factors can affect the SUV, such as the type of scanner, the time 

between the FDG injection and data acquisition, the image reconstruction method, the 

calculation of the SUV by the scanner vendor, image noise, etc. [54].  Therefore, the selection 

of a suitable threshold requires specialised domain knowledge of PET-CT imaging [53]. In 

recent years, thresholding-based methods have been generally replaced by machine learning 

counterparts [50]. Various machine learning strategies for tumour segmentation have been 

explored, including the fusion of modality-specific features or complementary information 

from PET and CT, such as graph-based methods [4], [55]–[59]. For instance, Bagci et al. 

proposed a random walk method for co-segmentation of multiple objects in PET, PET-CT, 

PET- magnetic resonance imaging (MRI), and fused PET-MRI-CT images via a hyper-graph 

[4]. Similarly, Han et al. formulated the tumour segmentation problem as a graph-based 

Markov Random Field (MRF) with an energy function that leveraged the advantageous 

characteristics of each modality and penalized the segmentation difference between PET and 

CT images [57]. Furthermore, some researchers used one modality to guide tumour localization 

in another modality. Wojak et al. proposed a joint variational segmentation method using PET 

intensities to provide local constraints to adjust the segmentations on CT [60]. Bagci et al. 

proposed a random walk segmentation method that employs FDG uptake value thresholds in 

PET to automatically initialize foreground and background seeds, and then found 

corresponding boundaries in the CT image [56]. However, these methods that utilize PET only 

to drive segmentation are highly dependent on the PET SUVs, hence they are inherently limited 
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in the presence of normal high-uptake activity, which can result in false positive segmentation 

results. 

 

2.3.2 Deep Learning-based Segmentation Methods 

In recent years, deep learning methods based on CNNs have made great progress in automatic 

medical image analysis, and supervised CNN-based methods are regarded as state-of-the-art in 

PET-CT tumour segmentation. The success of supervised deep learning methods is mainly 

attributed to their ability to automatically extract features from images that are optimized for 

individual tasks with ground truth [25]. Guo et al. investigated the performance of CNNs on 

multimodal medical images, including PET-CT by using multiple CNNs, one for each imaging 

modality, then assembling the CNNs output results to produce the tumour segmentation results 

[61]. Jin et al. proposed a two-stream chained network for gross tumour volume segmentation 

in PET-CT images, utilising early fusion and late fusion to fuse the complementary information 

from the two modalities [62]. Kumar et al. proposed a co-learning approach to segment 

multiple objects with PET-CT images, inclusive of tumours and normal organs, where a two-

branched U-Net was implemented to extract and fuse PET and CT features across multiple 

CNN blocks [63]. Li et al. proposed a variational method that used a 3D fully convolutional 

network to generate a tumour probability map from the CT images and integrated it with the 

PET images to segment the tumours via a fuzzy variational model [64]. Bi et al. proposed a 

recurrent fusion network for tumour segmentation in PET-CT images, using cascaded CNNs 

to combine the multimodal imaging features with the estimated intermediary segmentation 

results from multiple recurrent fusion phases [65]. Fu et al proposed a multimodal spatial 

attention module (MSAM) that automatically learned to emphasize spatial regions related to 

tumours and suppress normal regions with high FDG uptake in PET images, then the spatial 

attention maps were subsequently employed in a CNN to guide the tumour segmentation on 
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CT images [66]. Xue et al. proposed a co-learning framework for improving the segmentation 

of tumour lesions in PET-CT images, utilizing a shared down-sampling block and hierarchical 

feature co-learning module to detect salient and complementary features of the lesions during 

the fusion process [67]. Xiang et al proposed a modality-specific segmentation network for 

tumour segmentation in PET-CT images, this network used two separate branches to 

simultaneously learn the PET and CT imaging features, and meanwhile, an adversarial task 

was incorporated to minimise the modality discrepancy and preserve modality-common 

representation [68]. The aforementioned approaches employed one stage CNN model trained 

in an end-to-end manner, which could fail to capture fine details or heterogeneous structures 

of tumour regions, especially when multiple complex imaging modalities, such as PET-CT, are 

involved. Both the texture and semantic information of small tumours could be lost after 

several down-sampling convolutional layers, especially within the one-stage CNN model, 

resulting in false negative segmentation errors.  

 

2.4 Conventional Predictive Model Construction Methods  

Conventional radiomics methods can be divided into five main steps, as illustrated in Figure 

2.5: (i) image acquisition/reconstruction; (ii) regions of interest (ROIs) segmentation; (iii) 

hand-crafted features (e.g., intensity, texture, shape, etc.) extraction; (iv) predictive model 

construction. The first step involves routine clinical image acquisition and reconstruction. 

With the acquired medical images, the ROIs (e.g., tumours) needs to be manually annotated 

by at least one experienced radiologist or oncologist. Quantitative hand-crafted radiomics 

features, which contain information about tumour heterogeneity, texture patterns, and 

biomarkers, are then extracted from the segmented ROIs from the medical images. 

Afterwards, statistical machine learning methods (e.g., random forest, logistic regression, 

SVM, etc.) are implemented to correlate these features with patient’s future outcomes or 
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diagnostic results. In general, conventional radiomics studies extract hand-crafted radiomics 

features to quantify various tumour phenotypes on medical images and further utilise these 

features as predictors of genetics and clinical outcomes [69]. As the hand-crafted radiomics 

features are defined and extracted based on many different factors, such as the disease types, 

imaging modalities, etc., the existing conventional radiomics methods have been categorised 

according to the predictive models comprising of regression models, random forest, support 

vector machine, k-nearest neighbour.  

 

 

Figure 2.5. The pipeline of conventional radiomics methods. (a) image acquisition / 

reconstruction, (b) region of interest segmentation, (c) radiomic features extraction, and (d) 

statistical analysis and modelling. The PET-CT images are from the public challenge dataset 

AutoPET [5].  

 

2.4.1 Cox Proportional Hazards Regression 

Cox Proportional Hazards Regression, also known as the Cox regression model, is a statistical 

methodology used to investigate the relationship between a set of independent variables and 

survival time [70]. The Cox regression model provides an estimate of the hazard function, 

which is the probability that an event (such as death, failure, or relapse) will occur at a certain 

time given that an individual has survived up to that time. It also helps identify the factors that 

affect the hazard rate with the help of variables that are known to affect the outcome, such as 

age, gender, and initial diagnosis. The hazard function is defined as follows: 

(a) (b) (c) (d)
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𝜆(𝑡|𝑋$) = 𝜆%(𝑡)𝑒𝑥𝑝,𝛽"	 	𝑋$" +⋯+ 𝛽&	 	𝑋$&1          (2.1) 

 

where 𝑋$ = (𝑋$", … , 𝑋$&) is the realized values of the covariates for subject 𝑖. 𝛽$	 are the 

effect parameter(s). Note that between subjects, the baseline hazard 𝜆%(𝑡) is identical (has no 

dependency on 𝑖).  

Cox regression has been commonly used in radiomics studies because it is capable of 

analysing time-to-event data and identifying imaging features that are associated with specific 

clinical outcomes. For example, Spraker et al implemented a Cox regression model to 

demonstrate the prognostic value of radiomics features extracted from MR images on overall 

survival prediction tasks for patients with STSs [71]. Similarly, Coroller et al. used the Cox 

regression model with univariate and multivariate analysis to prove that at least 35 radiomics 

features from pre-treatment CT images are prognostic for distant metastasis (DM) in lung 

adenocarcinoma [72]. Although these studies proved that radiomics features were capable of 

capturing detailed information about the tumour phenotype and could be used as a prognostic 

biomarker for clinical patient outcomes, only single modality images were utilised in this study. 

More recently, Lv et al. proposed a multi-level fusion strategy for multimodal PET-CT images 

to predict the survival outcomes of patients with head-and-neck cancer; they demonstrated that 

Cox regression models with fusion of radiomics features consistently outperformed those using 

single modality images in patient outcome prediction [73]. 

 

2.4.2 Logistic Regression 

Logistic regression is a statistical method used to analyse the relationship between a dependent 

variable and one or more independent variables. It is a type of regression analysis commonly 

used to predict the probability of a binary outcome, such as yes/no or true/false [74].  
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In logistic regression, the dependent variable is a categorical variable with two possible 

outcomes, and the independent variables can be either continuous or categorical. The model 

estimates the probability of the dependent variable belonging to one of the two possible 

outcomes based on the independent variables. Since the outcome is a probability, the dependent 

variable is bounded between 0 and 1, and a logit transformation is applied to the probability - 

that is, the probability of success divided by the probability of failure. This is also commonly 

known as the log odds, or the natural logarithm of odds, and this logistic function is represented 

by the following equations: 

 

𝐿𝑜𝑔𝑖𝑡(𝑝$	) =
"

"'()&*+&!
	,

      (2.2) 

 

ln &!
	

"+&!
	 = 𝛽%	 + 𝛽"	 	𝑋" +⋯+ 𝛽-	 	𝑋- .    (2.3) 

 

In this logistic regression equation, 𝐿𝑜𝑔𝑖𝑡(𝑝$	) is the dependent variable and 𝑋- is the 

independent variable. The 𝛽-	  parameters, or coefficients, in this model, are commonly 

estimated via maximum likelihood estimation. This method tests different values of 𝛽-	 through 

multiple iterations to optimize for the best fit of log odds. All of these iterations produce the 

log-likelihood function, and logistic regression seeks to maximize this function to find the best 

parameter estimate. Once the optimal coefficient (or coefficients if there is more than one 

independent variable) is found, the conditional probabilities for each observation can be 

calculated, logged, and summed together to yield a predicted probability.  

Logistic regression has been widely used in radiomics, where hand-crafted radiomics 

features extracted from medical images are defined as independent variables and patient 

outcomes or diagnostic results as the dependent variable. These models can be used to identify 

which radiomics features are most strongly associated with the clinical outcome of interest and 
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can be used to develop more accurate and personalized diagnostic and prognostic tools for 

various cancers. For example, Xiong et al. evaluated the prognostic value of FDG PET 

radiomics features in predicting local control in oesophageal cancer after treatment with 

concurrent chemoradiotherapy [75]. In addition, Vallieres et al  built a joint FDG-PET and 

MRI texture-based model to evaluate the lung metastasis risk in STS at an early stage [7]. They 

implemented multivariable and univariate analysis to select radiomics features that were 

extracted from different modality scans, then the selected features were fed into a logistic 

regression model to predict lung metastases.  

 

2.4.3 Random Forest 

Random forest is a type of ensemble learning algorithm that combines multiple decision trees 

to create a more robust and accurate predictive model, and it can be used for both classification 

and regression problems [76].  

In radiomics, random forest models are often used to identify the most important 

radiomics features for clinical outcomes prediction. The algorithm works by randomly 

selecting subsets of features from the input data and building multiple decision trees based on 

these subsets. The algorithm then combines the predictions of these decision trees to create a 

final prediction. By using multiple decision trees and random feature selection, random forest 

models can reduce overfitting and improve the generalization of the model to new data. 

Vallieres et al extracted 1615 hand-crafted radiomics features from pre-treatment FDG-PET 

and CT images to assess the risk of locoregional recurrences and DM for patients with head-

and-neck cancer, random forest was used as the predictive model in this study [12]. Peeken et 

al proved the prognostic value of CT-based radiomics features by using the random forest in 

patients with STSs treated with neoadjuvant radiation therapy, these features can be used to 

predict tumour grading, and systemic and local progression. [14] While random forest provides 
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flexibility and reduced risk of overfitting, it requires more computational resources and usually 

takes a longer time to build the forest from the decision trees. 

 

2.4.4 Support Vector Machine 

Support vector machine (SVM) is a supervised machine learning algorithm that can be used 

for both classification and regression tasks. SVM works by identifying the best possible 

hyperplane, which separates the different classes of data points in a high-dimensional feature 

space, in order to achieve maximum margin between the classes [77]. 

Specifically, given a set of training examples, each marked as belonging to one of two 

categories, an SVM training algorithm builds a model that assigns new examples to one 

category or the other, making it a non-probabilistic binary linear classifier. SVM maps training 

examples to points in space so as to maximise the width of the gap between the two categories. 

New examples are then mapped into that same space and predicted to belong to a category 

based on which side of the gap they fall. SVM works by identifying the best possible 

hyperplane, which separates the different classes of data points in a high-dimensional feature 

space, in order to achieve maximum margin between the classes. This makes the classification 

more accurate and less susceptible to overfitting. In addition to performing linear classification, 

SVMs can efficiently perform a non-linear classification using what is called the kernel trick, 

implicitly mapping their inputs into high-dimensional feature spaces. 

In radiomics, SVMs are often utilised to classify medical images based on the radiomics 

features extracted from them or to predict clinical outcomes associated with certain cancers. 

Hao et al defined a new hand-crafted shell feature from PET images alone to predict distant 

failure in non-small cell lung cancer (NSCLC) and cervix cancer patients, the shell feature 

showed better predictive performance with an SVM classifier in both cohorts when compared 

to other matrix-based hand-crafted features extracted from PET [6]. Juntu et al have proved 
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that MRI-based radiomics features were able to discriminate the malignancy grade of STSs by 

leveraging SVM [78]. 

 

2.4.5 K-Nearest Neighbour 

K-nearest neighbour (KNN) is a non-parametric, supervised learning method, which uses 

proximity to make classifications or predictions about the grouping of an individual data point 

[79]. While it can be used for either regression or classification problems, it is typically used 

as a classification algorithm in radiomics, working off the assumption that similar points can 

be found near one another. 

For classification problems, KNN works by finding the k-number of the nearest data 

points in the training set to the new data point and then assigning the class of the majority of 

those k-nearest neighbours to the new data point. The value of k is chosen by the user and 

influences the accuracy of the model. Corino et al have proved that MRI-based radiomics 

features were able to discriminate the malignancy grade of STSs by leveraging the KNN 

classifier respectively [13]. Although KNN is easy to implement and has few hyperparameters, 

KNN does not perform well with high-dimensional data inputs and is more prone to overfitting. 

 

2.4.6 Challenges to Conventional Radiomics Methods 

Despite the promising clinical potential of radiomics, there are still some limitations in current 

conventional radiomics studies. 

Firstly, while there is an increasing interest in utilising multimodal medical imaging data 

in radiomics [80], all these conventional radiomics studies still heavily depend on the hand-

crafted radiomics features and high demand of prior knowledge (e.g., ROI annotation and 

manual tuning of many parameters for different predictive models). 

Secondly, not all hand-crafted features are recommended for use as they may be sensitive 
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to the imaging data acquisition modes and corresponding reconstruction parameters [69]. 

Specifically, Galavis et al assessed the variability of 50 PET radiomics features based on 

different acquisition modes, reconstruction algorithms, iteration numbers, and other factors, 

and among them, forty features were shown to have substantial variability with a relative 

difference of more than 30% [81].  

Thirdly, conventional radiomics studies rely on an ad-hoc definition of “traditional” 

hand-crafted image features that have been used across a wide range of generic object 

recognition tasks. Thus, such features, which are primarily based on textures, shape, intensity, 

etc., are not optimised for specific imaging modalities and specific disease types, e.g., features 

required in PET lung cancer detection and characterisation differ greatly from MRI brain 

degradation analysis. 

In addition, these low-level features are usually extracted in the small lesion region, and 

hence, they cannot fully describe the image that comprises high-level semantics. Therefore, it 

will be challenging to make use of these relatively simple image features to improve the 

prognosis of the disease with the increasing amount of high-dimensional information obtained 

from medical images. 

Nevertheless, due to the wide variations among different imaging modalities, the 

differences resulting from manual annotation and the complicated feature selection and 

analysis processes, the conventional radiomics methods tend to be time-consuming and error-

prone with human bias. 

 

2.5 Deep Learning-Based Predictive Model Construction Methods 

In recent years, deep learning-based approaches have made significant advances in the field of 

medical image analysis and have been applied to various tasks such as classification, 

segmentation, and detection [82]. The success of these approaches can be largely attributed to 
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their ability to train computational models consisting of multiple processing layers, which 

enables the learning of features that correspond to both shallow and deep semantics of the 

images [83].  

Despite the demonstrated success of deep learning in medical image analysis, there are 

still gaps between radiomics and deep learning that have not been properly addressed. Most 

deep learning methods in medical image analysis were designed to detect or classify diseases, 

and they did not investigate their potential applications in predicting prognostic characteristics 

of the disease. In this chapter, a comprehensive overview of the progress and challenges in 

supervised deep learning-based radiomics methods is provided. Specifically, the existing 

radiomics studies will be categorised and reviewed based on commonly used deep learning 

techniques, including recurrent neural networks (RNNs) and convolutional neural networks 

(CNNs) [84]. 

 

2.5.1 Convolutional Neural Network (CNN) 

CNN is one of the most widely used techniques in deep learning and has become the state-of-

the-art in radiomics. This is attributed to the CNN’s ability to directly extract high-level 

semantic information in an end-to-end manner that is meaningful to the patient outcomes, 

which reduces the need for prior knowledge in hand-crafted radiomics features definition and 

other manual input [15], [16]. The fundamentals of CNN are: 1) convolutional layers to learn 

adjustable weights (i.e., filters) that can be used to extract features from the input (see Figure 

2.8); 2) activation functions (e.g., sigmoid, ReLU, also known as rectified linear units, etc.) to 

introduce non-linearity into the network, allowing the network to learn more complex 

relationships between input and output; 3) pooling layers (e.g., average- or max- pooling) to 

reduce the spatial dimensions (i.e., width and height) of the input volume (down-sampling the 

data in the process), while preserving its depth and aggregating features. The output of a CNN 
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with a single layer can be represented as follows: 

 

𝑓.(𝑿;𝑾, 𝒃) = 𝑝𝑜𝑜𝑙&,𝜎(𝑾 ∗. 𝑿 + 𝒃)1    (2.4) 

 

where 𝑿 is the input feature map, 𝜎(∙) is the pointwise non-linear function, and	𝜃 =

{𝑾, 𝒃} are the set of parameters (i.e., weights and biases). The 𝑝𝑜𝑜𝑙&(∙) function denotes a 

pooling operation and 𝑝 is the size of the pooling region. The symbol ∗. represents convolution 

operation with stride s. As a result, the resolution of the output feature map 𝑓. is downsampled 

by a factor of s. 

 

 

Figure 2.6. An example convolutional layer. The input feature map has a dimension of 5×5. 

The convolutional layer has 4 kernels (in blue) of 3×3, padding (in grey) is 1 and the stride s is 

2. 

 

There are many well-known CNN backbones employed for different tasks, such as U-

Net for object segmentation [85], ResNet for classification [86], etc. A large proportion of 

recent CNN-based methods are derived from those well-established backbones. As for the 

CNN in radiomics, at an earlier stage, Oakden-Rayner et al tried to predict patient longevity 



33  

and overall individual disease status with cross-sectional CT images by leveraging both deep 

learning and conventional radiomics methods [87]. Their proposed method provided a 

conceptual framework for the use of radiomics techniques to identify tissue-wide pathological 

changes (imaging biomarkers) to quantify the latent health of the patient. Their experimental 

results demonstrated that modern deep learning techniques could be used within a radiomics 

framework, and were comparable to conventional radiomics and clinical manual methods for 

longevity prediction. Subsequent studies have demonstrated that CNN can better capture and 

understand radiological information from medical images [44]. Motivated by this success, 

many studies have attempted to adopt CNN for radiomics. For instance, Lao et al investigated 

the potential of transfer learning-based deep learning features in generating similar radiomics 

signatures for overall survival prediction in Glioblastoma Multiforme (GBM) [19]. Their 

method involved extracting conventional radiomics features and deep learning features from 

the segmented tumour region where CNN is utilised as a feature extractor for deep learning 

features. The optimal feature set was selected using the least absolute shrinkage and selection 

operator (LASSO) Cox regression model. The proposed method achieved better performance 

than traditional risk factors for overall survival prediction, and the ensembled model further 

improved predictive performance. However, this study still utilised a complicated and error-

prone method similar to conventional radiomics methods and focused only on single-modality 

MR images. In contrast, Li et al implemented an end-to-end deep learning-based radiomics 

model to predict the mutation status of isocitrate dehydrogenase 1 (IDH1) for patients with 

low-grade GBM [88]. Instead of calculating hand-crafted radiomics features only from 

segmented regions in medical images, all the image features were completely obtained by CNN 

without extra calculation and extraction operations. Similarly, Kumar et al presented a CNN-

based discovery radiomics framework for lung cancer grade classification using CT imaging 

data. aiming to discover customised radiomics sequencers tailored for better representing lung 
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cancer characteristics [89]. Additionally, deep learning networks were used for mortality risk 

stratification with standard-of-care CT images from NSCLC patients by Hosny et al. [16]. 

Diamant et al. utilised a CNN to extract deep learning-based radiomics features from pre-

treatment CT images to predict treatment outcomes of patients with head and neck squamous 

cell carcinoma, outperforming conventional radiomics methods [90]. Furthermore, Zhu et al 

and Hermessi et al developed a deep learning diagnosis model based on MR images to classify 

meningioma and STS respectively [18], [91]. More recently, Fu et al compared the 

performance of hand-crafted radiomics features and deep learning-based radiomics features in 

predicting the neoadjuvant chemoradiation response for locally advanced rectal cancer patients 

with pre-treatment diffusion-weighted MR images [17], and found that deep learning achieved 

significantly better prediction performance. However, most of these deep learning-based 

radiomics methods were designed for a single imaging modality or a particular body region, 

which limits their ability to derive complementary radiomics features that fully represent 

tumours. 

Few studies have reported on CNN-based radiomics approaches for multiple combined 

imaging modalities. Chen et al. proposed a hybrid predictive model consisting of a many-

objective radiomics model and a 3D CNN to predict lymph node metastases using PET-CT 

images from patients with head-and-neck cancer [21]. The underlying assumption was that 

CNN’s abstract level features and hand-crafted texture features were complementary [92], so 

combining them could provide more accurate results. However, using a 3D CNN alone 

performed sub-optimally, and incorporating conventional radiomics components, such as 

hand-crafted features, improved performance. This is because the deep learning features 

extracted from the last convolutional layer of the CNN only contained high-level semantic 

information, while the texture information from shallow convolutional layers was neglected. 

Therefore, existing CNN-based radiomics studies suffered from the limitations of traditional 
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radiomics methods and failed to fully utilise the potential of CNNs in capturing complementary 

information from multimodal medical images. 

 

2.5.2 Recurrent Neural Network (RNN) 

RNN is a type of neural network that is commonly used for natural language processing and 

sequential data analysis. Unlike CNNs, RNNs are designed to process sequences of data, where 

the current input depends on the previous inputs and their associated hidden states. This makes 

RNNs particularly useful for tasks where the meaning and context of a sequence of data can 

only be understood by considering the sequence as a whole. The key feature of RNNs is that 

they have a "memory" that allows them to retain information about previous inputs, making 

them well-suited for processing sequential data [93]. 

In radiomics, RNNs can be used to analyse medical images that have a time component, 

such as MRI images taken over a period of time to track the progression of a disease. RNNs 

can also be used for other tasks such as predicting the survival time of a patient, where the 

features extracted from the images are processed in a time-dependent manner. For example, 

Azizi et al. adopted Long-Short-Term-Memory (LSTM) for the classification of benign and 

malignant prostate cancer based on sequences of US images [94]. Although the experimental 

results showed that they achieved higher predictive accuracy with image sequences, the 

generalizability of their method was strictly limited to sequential medical imaging data with a 

temporal component. When compared to CNNs, RNNs require a large number of 

computational resources due to their recurrent nature and the need to process each input in a 

sequence. Additionally, RNNs are not well-suited for processing spatial information in medical 

images while CNNs are generally better at capturing spatial information in volumetric medical 

imaging data. 
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2.6 Summary of Gaps 

In this Chapter, a comprehensive review of radiomics studies has been conducted, 

encompassing conventional and deep learning-based radiomics methods. The analysis of the 

literature has identified advancements in the field and the challenges that still exist. In 

summary, the gaps identified can be summarised as follows: 

1. Image Annotations. Both conventional and deep learning-based radiomics methods 

rely on lesion labels to define the ROIs for feature extraction. Manual annotations are 

considered the gold standard, but the scarcity of manually annotated medical images 

due to high cost and complicated acquisition procedures remains a challenge. There is 

an urgent need for algorithms that are less dependent on labels, such as with semi- and 

self-supervised methods, as well as methods designed to work with small amounts of 

labelled data e.g., transfer learning and domain adaptation. 

2. Image Segmentation. Despite great advances in single modality segmentation 

methods, the task of automated PET-CT lesion segmentation poses a unique challenge 

due to the need to consider complementary features from both modalities. Therefore, 

robust methodologies are anticipated in the field of radiomics, particularly for 

multimodal PET-CT images. 

3. Multi-modal Imaging. Most existing deep learning-based radiomics methods are 

designed for a single modality image (e.g., CT, MRI, etc.), which limits their ability to 

derive complementary radiomics features that represent tumours. Although there is a 

limited number of CNN-based radiomics studies where multimodal PET-CT images 

were used, their focus is to utilise both conventional radiomics features and deep 

radiomics features extracted from CNNs for clinical applications, rather than advancing 

the technical usage of CNN for radiomics. As a result, these methods suffer from similar 

limitations of conventional radiomics methods in prior knowledge about feature 
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definition and extraction, and these methods fail to fully utilise the potential of CNNs 

in capturing complementary information from multimodal medical images. Therefore, 

there is a need for deep learning methods in radiomics that enable optimal extraction 

and analysis of information from multimodal PET and CT images. 

4. Manual Architecture Design. Although CNN-based deep learning-based radiomics 

methods have become the state-of-the-art, existing CNNs heavily rely on human 

expertise to design dataset-specific deep learning architectures, including number of 

convolutional layers, and structure of convolutional blocks. Architecture design and 

optimization require a significant amount of domain knowledge, such as to validate the 

architecture performance and tuning the hyperparameters. This complexity is further 

compounded when multiple imaging modalities, such as PET-CT, are used in the 

radiomics analysis. Therefore, automated architecture search can ease the subsequent 

manual designs, such that final architecture of CNN can be achieved more efficiently. 

 



 
 
Chapter 3. Tumour 
Segmentation with Self-
supervision Enabled False 
Positive and False Negative 
Reduction Network 
 
 
In this chapter, an automated tumour segmentation method, termed Self-supervision enabled 

False positive and false negative Reduction Network (SFRN), is introduced for multimodal 

PET-CT images. SFRN includes a self-supervised pre-training strategy to improve the feature 

representation ability of the CNNs within SFRN in characterizing tumour regions, 

contributing to better generalizability across different tumours in multimodal PET-CT 

images. Moreover, a multi-stage network is built with the pre-trained weights obtained from 

the self-supervised pre-training strategy, which consists of a global segmentation module 

(GSM) to coarsely locate the tumour regions, followed by a local refinement module (LRM) 

with a hybrid loss to iteratively eliminate the false positive and false negative errors 

introduced from the GSM. Furthermore, a classification branch is further incorporated to 

enhance the ability of our network to distinguish the tumour regions from healthy regions in 
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multimodal PET-CT images, which allows the further elimination of false positive regions. 

Experimental results with three multimodal PET-CT datasets (one public challenge dataset, 

one public STS dataset and one in-house lung cancer data) show that the SFRN achieved 

consistently better segmentation results when compared to the existing state-of-the-art 

methods. In addition, the preliminary version of the SFRN (GSM with false positive reduction 

network only) achieved the leading performance in Dice score and ranked 2nd place in the 

final ranking at the 2022 MICCAI AutoPET Challenge [95], [96].  In this chapter, following 

contributions are further introduced: (i) an LRM to remove false negative segmentation and, 

(ii) to incorporate a classification branch to improve the ability of tumour segmentation. 

 

3.1 Contributions 

The main contributions of this chapter are as follows: 

1) A self-supervised pre-training strategy is proposed to improve the feature representation 

ability of tumour regions in the CNNs, contributing to better generalizability across 

different diseases and PET-CT datasets where tumours could be located at any part of the 

body with better segmentation results. When compared to the existing self-supervised 

learning (SSL) methods for multimodal medical images, the strategy can be applied to 

different multi-modal imaging data without specific characteristics required. 

2) A local refinement module (LRM) is introduced to refine the candidate tumour regions 

generated from the GSM. A hybrid loss function is formulated to simultaneously minimize 

both false positive and false negative errors in multimodal PET-CT images. When 

compared to the existing one-stage methods, the SFRN is capable of segmenting tumours 

of various sizes, whereas existing methods tend to segment relatively large tumours only. 
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3) A classification branch is incorporated into the SFRN to further enhance the ability of the 

CNNs to distinguish the tumour regions from healthy regions in multimodal PET-CT 

images, which allows the elimination of false positive regions. 

 

This chapter’s contributions address the challenge of existing automated tumour segmentation 

methods for multimodal images in the field of radiomics mentioned in Chapter 1. It also aligns to 

the gap in Chapter 2 that refers to challenges and limitations in radiomics using multimodal PET-

CT images. This chapter also expands on the literature in Section 2.3 by including detailed 

descriptions to the state-of-the-art comparative methods. The challenge dataset and STS dataset 

is from public resources and has been cited, the other lung cancer dataset is private in-house data. 

 

3.2 Materials and Methods  

3.2.1 Materials and Pre-processing 

Non-small cell lung cancer (NSCLC) and Soft-tissue sarcomas (STSs) datasets were used in 

the evaluation. Although the AutoPET challenge provided a large training dataset, the testing 

data was not available, and less than half of the PET-CT studies had different types of diseases 

[96]. Thus, the challenge data was only used for self-supervised pre-training. All three 

datasets were pathologically confirmed (see Figure 3.1 for three examples of PET-CT images 

from different datasets), their details were described below and shown in Table 3.1. 

For the AutoPET challenge data (denoted as AutoPET dataset), the given training 

dataset consisted of 1,014 PET-CT scans derived from 900 patients acquired at the University 

Hospital Tübingen, Germany [96]. All images were in NifTI format. There were 513 scans 

without lesions, and 188, 168, and 145 scans were histologically proven with malignant 

melanoma, lung cancer, and lymphoma, respectively. In addition, all patients had clinical 

reports including cancer diagnosis, sex, and age. A separate testing dataset was not released 
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to the public and was only used for online evaluation. The testing dataset had a preliminary 

testing set of 5 studies for self-evaluation and a final testing set of 200 studies for final 

ranking. The preliminary testing set was part of the final testing set where 100 studies were 

from the same hospital as the training database (University Hospital Tübingen) and the other 

100 scans were acquired from the University Hospital of the LMU in Munich with a similar 

acquisition protocol. The tumour regions for all the training and testing datasets were 

annotated by two radiologists with more than 5 years of experience in Hybrid Imaging and 

experience in machine learning research. 

 

Table 3.1. Details of the Datasets 

Datasets AutoPET STS FD 

Number 
of Studies 501 51 117 

Lesions 

malignant 
lymphoma, 
melanoma, 

NSCLC 

STSs NSCLC 

PET 
Resolution 
(pixels) 

400×400 128×128 168×168 

PET 
Spacing 
(𝐦𝐦𝟐) 

2.04 3.91-5.47 4.06 

CT 
Resolution 
(pixels) 

512×512 512×512 512×512 

CT 
Spacing 
(𝐦𝐦𝟐) 

0.98 0.98 1.37 

Slice 
Thickness 
(mm) 

2-3 (CT) 
3 (PET) 3.27 3 or 5 

Scanner 
Siemens 
Biograph 

mCT 

GE 
Discovery 

ST 

Siemens 
Biograph 
TruePoint 

 

 



42  

The STSs dataset (denoted as the STS dataset) is publicly available at the Cancer 

Imaging Archive and was acquired from McGill University Health Centre, Quebec, Canada 

[7], [97]. This dataset has 51 patients with histologically proven, extremity primary STS. Each 

patient had 4 imaging modalities FDG PET, CT and T1-weighted and T2-weighted with fat-

suppression (T2FS) MR scans. The gross tumour volume was manually annotated slice-by-

slice on T2FS MR scans by an expert radiation oncologist and then registered to PET and CT 

images via a rigid registration algorithm. 

 

 

Figure 3.1. Three examples of PET-CT images from different datasets used in this chapter. 

The top row (i) are PET images, and the bottom row (ii) are CT images. The blue arrows point 

to the tumour regions. 

 

The NSCLS dataset was acquired from the Department of Nuclear Medicine at Fudan 

University Shanghai Cancer Centre, Shanghai, China (denoted as the FD dataset). As shown 

in Table 3.1, the slice thickness was either 3mm or 5mm, and the specific number of 

corresponding PET-CT studies was 77 and 40 respectively. All the data were analysed 

anonymously, two radiologists annotated the tumour regions from the axial plane of the CT 

FDAutoPET STS

(i)

(ii)
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with the ITK-SNAP software (V3.6). PET images were used to assist in excluding conditions, 

such as pneumonia. 

Multiple pre-processing steps were applied to all the imaging datasets. Firstly, Linear 

up-sampling was applied to both PET and CT images based on their spacing and slice 

thickness to ensure that the spatial dimensions were the same in all directions. Secondly, to 

compress the usage of GPU memory, all the PET-CT image volumes were cropped into a 

patch size of 224×224 in the axial plane. Then the images were set to the SUV range of [0, 

14.25] for PET and HU range of [-800, 400] for CT, and further mapped to [0, 1] via min-

max normalization. Finally, for PET images, the input slices were normalized with the mean 

and standard deviation values of the entire training dataset, such that to adjust all the regions 

of interest (ROIs) to a notionally common scale based on the metabolism intensity of tumour 

regions. For the CT images, the input slices were normalized with the mean and standard 

deviation values of the individual patient. 

 

3.2.2 Overview of the Proposed Method 

The SFRN is outlined in Figure 3.2. The SFRN takes multimodal PET-CT images as input and 

consists of two main modules - global segmentation module (GSM) and local refinement 

module (LRM). The encoders within the SFRN are first pre-trained via self-supervised learning 

for the enhanced ability to characterize the tumour regions. Then the GSM is used to coarsely 

locate the candidate tumour regions in PET-CT images, which will be refined by the LRM to 

eliminate both false positive and false negative segmentation errors. 
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Figure 3.2. The overview of the SFRN. The arrows in different colours indicate different steps 

which are taken sequentially. The self-supervised pre-training improves the representation 

ability of the encoders in our model to characterize the tumour regions in PET-CT images; this 

is followed by the global segmentation which uses the pre-trained ResNet50 encoder to 

coarsely delineate the candidate regions. Afterward, the LRM removes the false-positive and 

false-negative errors using the output of the GSM that is concatenated with the paired PET-CT 

images as input. 

 

3.2.3 Self-supervised Pre-training  

Inspired by the existing self-supervised learning methods for natural images [98]–[100], a self-

supervised pre-training framework was introduced, which was a combination of contrastive 

learning and knowledge distillation. This framework was illustrated in the top-left module of 

Figure 3.2 and Algorithm 3.1, the pseudo-code implementation. 

Although this pre-training framework shared a similar overall structure as recent self-

supervised approaches [98], [101]–[103], our method discarded the predictor block and 

incorporated knowledge distillation. Knowledge distillation is a learning paradigm that aims to 

projection
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transfer knowledge from a complicated model to a simpler model by training the simpler model 

with the SoftMax outputs of the complicated model [104]. Given a fixed teacher network 𝑓0#, 

the student network would be optimized by minimizing the cross-entropy loss w.r.t the 

parameters of the student network 𝜗., and the equations are shown below: 

 

𝐿𝑜𝑠𝑠 = 	min
0$
[−𝑃1(𝒙) log 𝑃.(𝒙)]     (3.1) 

 

𝑃.(𝒙)($) =
456	(7%$(𝒙)

!/:$)
∑ 456	(7%$(𝒙)

&/:$)'
&()

       (3.2) 

 

Where 𝒙 is an input image, the output probability distribution of both networks over 𝐾 

dimensions are denoted by 𝑃. and 𝑃1 respectively, and the probability 𝑃 is obtained by 

normalizing the output of the network with a SoftMax function. The 𝜏. is a temperature 

parameter that controls the sharpness of the output distribution and is usually larger than zero. 

However, unlike typical knowledge distillation, our teacher network is built from past iterations 

of the student network without any real labels using an exponential moving average (EMA, as 

shown in Figure 3.1). As there is no predictor in our framework, the teacher and student 

networks share the identical architecture. Thus, there will be no issues with the EMA in our 

framework. 

Furthermore, dimensional collapse is a common issue where the model maps all input to 

the same constant vector [105], and there are trivial solutions such as an extra predictor [102], 

or an additional clustering step [106]. To avoid model collapse, a centring and sharpening of 

the momentum teacher outputs (illustrated in Algorithm 1 as well) is further implemented, 

according to [100], centring prevents one dimension to dominate but encourages collapse to 

the uniform distribution, while the sharpening has the opposite effect. Applying both operations 
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balanced their effects which is sufficient to avoid collapse in presence of a momentum teacher. 

 

 

 

3.2.4 False-positive and false-negative Reduction Network  

The false-positive and false-negative network consisted of two main modules, as shown in 

Figure 3.2: a global segmentation module (GSM) and a local refinement module (LRM). The 

encoders in both modules were pre-trained on the AutoPET training dataset only via the self-

supervised learning method demonstrated in Section 3.2.3. 

For the GSM, a ResNet50 encoder was combined with a U-Net based decoder [85], [86], 

where the concatenated 3-channel PET-CT images were used as the input. Two channels of the 

input images were set to be PET while the rest of 1 channel was assigned to CT. Then a 

combined loss 𝐿𝑜𝑠𝑠<=> was used for training. 𝐿𝑜𝑠𝑠<=> consisted of a dice loss and a cross-

entropy loss [107], [108], which was defined as: 
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𝐿𝑜𝑠𝑠<=> = − ?∑ &!@!*
!

∑ &!
+*

! '∑ @!
+*

!
− "

A
∑ [𝑔$ log 𝑝$ + (1 − 𝑔$) log(1 − 𝑝$)]A
$B"        (3.3) 

 

Where 𝑝$ ∈ [0, 1] is the probability map of each pixel within the predicted tumour 

region, 𝑔$ ∈ [0, 1] is the probability map of each pixel within the ground truth tumour mask 

(label), and the sums run over all available 𝑁 pixels of the segmentation. 

The GSM can coarsely annotate the tumour lesion regions with a probability map at a 

threshold of 0.5. There would be segmentation errors, including false positives and false 

negatives, just like the other existing CNNs methods. These errors would be further reduced 

with our LRM. 

The backbone of our LRM is a 2D U-Net, combined with a classification branch. The 

original PET-CT images were fed into the LRM along with the output from the GSM, making 

the input data 5 channels (i.e., paired PET-CT images, global tumour probability map, and 

global binary segmentation prediction). To effectively remove the false positives, and false 

negatives as well as keep the accurate tumour segmentation, four losses were designed to 

optimize the LRM. A standard dice and cross-entropy loss were employed as the fundamental 

segmentation loss (denoted as 𝐿𝑜𝑠𝑠=C<), which was mathematically the same as the 𝐿𝑜𝑠𝑠<=>. 

As the tumours usually possessed a small proportion of the entire input images, the false 

positives and false negatives would be much less, resulting in an imbalanced segmentation 

problem. Therefore, the focal loss was used to optimize the training process of reducing false 

positives and false negatives [109], the loss function of reducing false positive errors was 

defined as: 

 

𝐿𝑜𝑠𝑠DE>_GH = min Y"
A
∑ [−𝛼(1 − 𝑝$)I log(𝑝$)]A
$B" [         (3.4) 
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Where 𝑝$ ∈ [0, 1] was the predicted probability of false positive pixels, 𝛼 ∈ [0, 1] was a 

weighting factor s to balance the sample, γ was a focusing parameter smoothly adjusted the 

rate at which easy examples were down-weighted, then the sums ran over all available 𝑁 pixels 

of the segmentation. In this work, 𝛼 and γ were set to 0.25 and 2 respectively. A similar formula 

was held for 𝐿𝑜𝑠𝑠DE>_GA.  

For the classification branch, there were two steps to produce the final classification 

results: (1) the feature maps at each scale of the convolutional block in the pre-trained encoder 

were first fed into a convolutional layer with a kernel size of 1 × 1 × 1, followed by batch 

normalization, ReLU activation, and a global average pooling layer. (2) all the features 

obtained from the last step were in the same dimension, and would be concatenated into two 

fully connected layers. ReLU layers and dropout layers with a probability of 0.5 were added 

after the first connected layer to reduce overfitting. A weighted cross-entropy loss was used for 

the training process and denoted as 𝐿𝑜𝑠𝑠DE>_JD=. As there were four losses utilized within the 

LRM, the combined losses of our LRM were defined as followed: 

 

𝐿𝑜𝑠𝑠DE> = 𝐿𝑜𝑠𝑠=C< +	𝐿𝑜𝑠𝑠DE>_JD= −	𝐿𝑜𝑠𝑠DE>_GH +	𝐿𝑜𝑠𝑠DE>_GA            (3.5) 

 

3.2.5 Implementation Details  

Our method was implemented with PyTorch [110] framework using one NVIDIA GeForce 

GTX 2080Ti GPU. Our model was initialized using the approach presented by He et al [111], 

and an adaptive-moment estimation with decoupled weight decay (AdamW) [112] was used 

for network optimization. During the training phase, the batch size was set to 8 and the learning 

rate was set to 0.0001 using a cosine annealing schedule. Data augmentation techniques were 

in real-time to avoid overfitting. The used data augmentation techniques are random rotation 
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(90°, 180°, or 270°) in the axial axis and randomly flipping in one of the two axes (sagittal and 

coronal).  

Furthermore, only PET-CT slices with lesions was used for the GSM, while an equal 

number of PET-CT slices without tumours were sampled and added to the training of the LRM. 

All the training was terminated when no further change was in the total loss. In our method, 

the total loss was generally stable after 160 epochs. 

 

3.3 Experiments and Results  

3.3.1 Experimental Setup  

The following experiments were conducted to evaluate the effectiveness of the proposed method. 

The proposed method was firstly compared with the state-of-the-art PET-CT segmentation 

methods including: (1) U-Net: a widely used baseline in medical image segmentation with an 

encoder-decoder architecture [85]; (2) Co-learning: a two-branched U-Net was designed to extract 

and fuse PET and CT information with spatial context [63]; (3) MSAM: multi-modal spatial 

attention module, which used PET images as an attention map to guide the tumour segmentation 

on CT images [66]; (4) MosNet: a modality-specific segmentation network, which used two 

separate branches to simultaneously learn the PET and CT imaging features along with a modality 

discriminator [68]; (5) nnUNet [113]: a U-Net based self-configuring CNN for biomedical image 

segmentation which demonstrated good generalizability across 23 public datasets. nnUNet 

achieved 1st and 3rd place at the AutoPET challenge. 

An ablation study was also conducted to investigate all the components of our SFRN, 

including the SSL strategy, GSM, the false positive/negative reductions, and the classification 

branch. 

All the experiments were conducted on two datasets: each of the datasets was divided into 

a 70/10/20 (training/validation/testing) split. For example, with the FD dataset, 81 patients were 
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used for training, 12 patients for validation, and 24 patients for testing. Images acquired from a 

patient can either be within training, validation or testing dataset only.  

 

3.3.2 Evaluation Metrics  

For all experimental comparisons, the p-value with an unpaired student’s t-test was computed. 

Four established segmentation evaluation metrics were adopted: Dice score, precision (Pre.), 

sensitivity (Sen.), and specificity (Spe.), defined as below: 

 

𝐷𝑖𝑐𝑒 = ?|𝑮𝑻∩𝑷𝑺|
|𝑮𝑻|'|𝑷𝑺|

       (3.6) 

 

𝑃𝑟𝑒. = |QH|
|QH|'|GH|

       (3.7) 

 

𝑆𝑒𝑛.= |QH|
|QH|'|GA|

       (3.8) 

 

𝑆𝑝𝑒. = |QA|
|QA|'|GH|

       (3.9) 

 

Where 𝑮𝑻 denotes the ground truth, 𝑷𝑺 is the algorithm predicted segmentation result, 𝑇𝑃𝑠 

are the true positive pixels (ROIs), 𝑇𝑁𝑠 are the true negative pixels (background), 𝐹𝑃𝑠 are the 

false positive pixels and 𝐹𝑁𝑠 are the false negative pixels. 

Using the four metrics in combination provides a comprehensive assessment of the 

performance of a tumour segmentation algorithm. The Dice score evaluates the spatial overlap, 

while precision and sensitivity measure the trade-off between correctly identifying tumour regions 

and minimizing false positives and false negatives. Specificity complements these metrics by 

focusing on true negatives. In the medical field, where patient care and treatment decisions are at 



51  

stake, it is essential to strike a balance between these metrics to ensure accurate and clinically 

meaningful tumour segmentations. 

 

3.3.3 Results  

3.3.3.1 Comparison to the State-of-the-art Methods 

A comparison of our SFRN method against the state-of-the-art methods is presented in Table 3.2. 

The results indicate that our SFRN obtained better performance with the best Dice score on STS 

(67.25) and the FD (74.20) datasets. With the FD dataset, our SFRN also achieved the best 

sensitivity (78.04) and the second-best precision (75.43). 

 

Table 3.2. Classification Performance Comparison with Existing Radiomics Methods 

Methods 
Evaluation Metrics 

Dice Pre. Sen. Spe. p-value 

ST
S 

U-Net [85] 59.63±28.79 64.50±30.39 64.49±28.74 99.65±1.42 1.07×10+R 
Co-learning 

[63] 60.53±25.72 58.41±27.06 70.53±27.01 99.45±0.67 8.83×10+?# 

MSAM [66] 61.62±32.12 58.30±32.86 71.75±34.16 99.59±0.34 1.72×10+"S 
MosNet [68] 63.27±26.83 60.18±28.00 76.07±29.73 99.32±0.49 1.57×10+"" 
nnUNet [113] 66.57±27.63 87.11±19.82 61.63±33.31 99.92±0.25 3.82×10+?R 
BDAV (ours) 65.43±32.51 66.41±34.15 69.38±34.46 99.71±0.49 3.15×10+T 
SFRN (ours) 67.35±25.57 67.41±26.79 72.97±23.39 99.72±0.41 - 

FD
 

MosNet [68] 53.82±36.80 64.55±39.84 51.64±37.67 99.84±0.29 9.33×10+"U 
U-Net [85] 63.97±24.92 71.95±26.29 63.80±26.90 99.74±0.36 0.031 
Co-learning 

[63] 64.25±27.47 70.27±27.19 67.18±30.71 99.70±0.28 8.86×10+TS 

nnUNet [113] 65.70±33.03 65.44±33.67 70.17±36.28 99.98±0.22 2.52×10+"V 
MSAM [66] 68.13±30.28 70.01±30.66 71.50±32.88 99.71±0.35 5.01×10+SU 

BDAV (Ours) 73.95±23.28 76.35±24.82 76.59±25.62 99.75±0.28 1.9×10+T 
SFRN (ours) 74.20±22.94 75.43±24.43 78.04±25.18 99.73±0.29 - 

The bold numbers represent the best results, and they are presented in the form of ‘mean value ± 
standard deviation’. 
 

Segmentation results from the comparison methods for the FD dataset are presented in 
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Figure 3.3. The CT images from the FD dataset were normalized to a lung window for better 

visualization of lung cancer regions, and the PET images were normalized to the median value of 

max SUV values of all the patients and presented in the inverted grayscale colormap. Different 

colours were painted on the segmentation outputs to present differences among comparison 

methods (i.e., green for true positive regions, black for true negative regions, red for false positive 

regions, and yellow for false negative regions). It shows that our SFRN was able to consistently 

outperform nnU-Net, MosNet, MSAM, and Co-learning, even with small tumours, as shown in 

Figure 3.3.  

 

 

Figure 3.3. Four example PET-CT studies of lung cancer (in axial slices) with (a) CT in the 

first column, (b) PET in the second column, and (c) ground truth (GT) in the third column. The 

segmentation results from different methods are presented in columns (d) to (i). Note that co-

learning (column f) and MosNet (h) failed to segment the tumour on the first example (row i), 

and nnUNet (column d) and MosNet (h) failed to segment the tumour on the fourth example 

(row iv). 

 

Figure 3.4 presents the results using STS datasets with the CT normalized to soft tissue 

(a) CT (b) PET (c) GT (d) nnUNet (e) unet (f) colearn (g) msam (h) mosnet (i) SFRN

(i)

(iii)

(ii)

(iv)

True Positive True Negative False Positive False Negative
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window. Our SFRN consistently produced better segmentation results with fewer false positive 

and false negative predictions. All the comparison methods suffered from false positive errors due 

to normal physiological regions being picked up that are in close proximity to the tumour regions 

(see the red segmentations in Figure 3.4). 

 

 

Figure 3.4. Four example PET-CT studies of STSs shown on axial image slices with (a) CT in 

the first column, (b) PET in the second column, and (c) ground truth (GT) in the third column. 

The segmentation results from different methods are presented in columns (d) to (i). 

 

Table 3.3. Part of the MICCAI 2022 AutoPET challenge final results on the hidden testing 

dataset. 

Teams (Backbones) 
Evaluation Metrics 

Dice  False Negative Volume ¯  False Positive Volume ¯ 

Blackbean (nnUNet) 62.26 0.5445 2.8372 

BDAV (GSM+LRM_FP) 62.08 0.7518 3.6111 

FightTumor (nnUNet) 60.04 0.4681 5.1026 

UIH-FL (nnUNet) 60.96 0.8316 4.8533 
Heiligerl (nnUNet + 
SwinUNETR) 60.52 0.6287 5.8741 

    The bold numbers represent the best results. 

(a) CT (b) PET (c) GT (d) nnUNet (e) unet (f) colearn (g) msam (h) mosnet (i) SFRN

(i)

(iii)

(ii)

(iv)

True Positive True Negative False Positive False Negative
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The MICCAI 2022 AutoPET challenge results are presented in Table 3.3 and our algorithm 

was referred to as BDAV. Since the testing dataset is inaccessible, we, therefore, were unable to 

evaluate our updated SFRN method on the testing dataset. All other top-5 teams used nnUNet as 

their backbone with different training strategies and post-processing techniques, such as a 

different combination of loss functions, assembling multiple trained models, and more data 

augmentation transformations, which were heavily dependent on their experience and prior 

knowledge about the tumour and imaging characteristics. I suggest that nnUNet, used for the 

comparisons in Table 3.2, could be regarded as a fair comparison between the top five challenge 

methods and our SFRN. In the challenge, our GSM + LRM_FP eventually achieved overall 2nd 

place over all the evaluation metrics. Specifically, our Dice score (62.08) and false positive 

volumes (3.6111) were ranked 2nd place with a difference of 0.18 and 0.77 respectively. As shown 

in Table 1, the BDAV result was further improved by our SFRN across all the evaluation metrics, 

and this is further detailed in the ablation study. 

 

3.3.3.2 SFRN Ablation Study 

To evaluate the effectiveness of our self-supervised pre-training strategy, six sets of 

comparative experiments were conducted on U-Net, the most widely used segmentation baseline, 

along with our SFRN and its components on both STS and FD datasets. Each comparative 

experiment contained two training strategies - with/without pre-training. The results are shown in 

Table 3.4. The results demonstrated that our SSL is capable of constantly improving the 

segmentation performance in Dice scores across all the comparison methods on both STS and FD 

datasets. 

Different components of our SFRN, i.e., GSM, LRM_FP, LRM_FN, and LRM_CLS have 

been evaluated on both STS and FD datasets with the results shown in Table 3.5. The results 
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indicated that each component from our SFRN methods consistently contributed to a better 

performance e.g., segmentation accuracy. Our SFRN method achieved the best Dice score 

(67.35), precision (67.41), and specificity (99.72) with minimum standard deviations on the STS 

dataset. It also obtained the best Dice score (74.20) on the FD dataset with a second-best precision 

(75.43) and specificity (99.73), and a third-best sensitivity (78.04). 

To quantitatively evaluate the effectiveness of different components in reducing 

segmentation errors, both the false positive rate (FPR) and false negative rate (FNR) were counted 

for each method and shown in Table 3.5. They are calculated by dividing the number of false 

positive/negative pixels by the input image size, and ‰ was used as the unit for better comparison. 

When compared to the GSM baseline, the LRM_FP and LRM_FN successfully decreased the 

false positive segmentation and false negative segmentation respectively on STS and FD datasets. 

Moreover, our SFRN with the LRM_CLS obtained the least segmentation errors on both datasets 

(i.e., 3.65‰ FPR and 1.05‰ FNR on the STS dataset, 3.24‰ FPR and 5.52‰ FPR on the FD 

dataset). 

Segmentation predictions from the different components, for example of tumours of lung 

cancer and STS, are presented overlaid on top of PET or CT images in Figure 3.5 and Figure 3.6. 

CT images in both Figure 3.4 and Figure 3.5 were normalized to soft tissue window (see column 

(b)) for clarity. For the lung cancers from the FD dataset, the segmentation results were shown on 

CT images that are normalized to lung window (see column (c) – (g) in Figure 3.5), which could 

exhibit more details within the lung region than the CT images in the soft-tissue window. For the 

STS dataset, as the contour of STS can be hard to see on the CT images, the segmentation results 

were shown on top of the PET images (see column (c) – (g) in Figure 3.5). In addition, as the 

variations of false positive and negative pixels among the ablation studies are relatively small 

compared to the tumour size, the visualization of segmentation errors in different colours can be 

hard to differentiate, all the ground truth of tumour labels were outlined in red while the 
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segmentation results were in blue on the medical images.  

As expected, the methods with the LRM_FP component tended to have fewer false 

segmentation errors while those with LRM_FN had fewer false negative errors. But our SFRN 

consistently produced more accurate segmentations which were aligned with the ground truth (see 

column (g) in Figure 3.5 and Figure 3.6. 

 

 

 

Table 3.4. Evaluation of Our Self-supervised Pre-training Strategy on Two Datasets 

Methods SSL 
Evaluation Metrics 

Dice Pre. Sen. Spe. 

ST
S 

U-Net [85] 
 59.63±28.79 64.50±30.39 64.49±28.74 99.65±1.42 
ü 62.75±29.86 60.42±30.83 73.86±32.36 99.24±1.49 

GSM 
 62.32±27.42 60.08±30.48 75.20±26.50 99.30±1.12 
ü 64.31±30.96 57.55±31.43 83.30±33.15 99.07±1.54 

GSM+ 
LRM_FN 

 62.70 ±28.24 62.87±30.72 69.97±31.83 99.66±0.42 
ü 65.23±26.88 62.14±28.86 77.75±27.29 99.35±0.99 

GSM+ 
LRM_FP 

 62.88±28.92 65.93±30.39 67.77±31.64 99.63±0.49 
ü 65.43±32.51 66.41±34.15 69.38±34.46 99.71±0.49 

GSM+ 
LRM_FP+ 
LRM_FN 

 63.73±26.89 64.26±29.85 71.75±28.38 99.56±0.59 

ü 66.30±27.54 63.37±28.82 77.34±28.77 99.50±0.67 

SFRN  
 64.04±28.48 65.92±29.64 72.14±32.83 99.60±0.57 
ü 67.35±25.57 67.41±26.79 72.97±23.39 99.72±0.41 

FD
 

U-Net [85] 
 63.97±24.92 71.95±26.29 63.80±26.90 99.74±0.36 
ü 67.47±27.51 69.68±28.59 72.18±30.64 99.63±0.45 

GSM 
 72.36±23.50 70.89±26.05 78.97±24.36 99.57±0.52 
ü 73.83±23.04 74.68±24.50 78.31±25.21 99.71±0.29 

GSM+ 
LRM_FN 

 72.63±24.16 76.77±26.78 73.34±25.37 99.75±0.29 
ü 73.99±22.95 74.92±24.27 78.36±25.14 99.72±0.29 

GSM+ 
LRM_FP 

 72.59±24.32 77.20±26.44 72.56±25.71 99.77±0.32 
ü 73.95±23.28 76.35±24.82 76.59±25.62 99.75±0.28 

GSM+  73.43±24.30 77.37±27.31 74.82±25.07 99.77±0.42 
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LRM_FP+ 
LRM_FN ü 74.04±23.18 75.34±24.77 77.69±25.31 99.72±0.28 

SFRN  
 73.66±24.09 77.02±27.50 75.38±24.54 99.76±0.47 
ü 74.20±22.94 75.43±24.43 78.04±25.18 99.73±0.29 

The bold numbers represent the best results, and they are presented in the form of ‘mean 
value ± standard deviation’. 

 

 

 

 

Table 3.5. Results of SFRN Ablation Study on Two Datasets (Part 1). 

 GS
M 

LRM
_FN 

LRM
_FP 

LRM
_CLS Dice Pre. Sen. Spe. 

ST
S 

ü    64.31±30.96 57.55±31.43 83.30±33.15 99.07±1.54 

ü  ü  65.43±32.51 66.41±34.15 69.38±34.46 99.71±0.49 

ü ü   65.23±26.88 62.14±28.86 77.75±27.29 99.35±0. 99 

ü ü ü  66.30±27.54 63.37±28.82 77.34±28.77 99.50±0.67 

ü ü ü ü 67.35±25.57 67.41±26.79 72.97±23.39 99.72±0.41 

FD
 

ü    73.83±23.04 74.68±24.50 78.31±25.21 99.71±0.29 

ü  ü  73.95±23.28 76.35±24.82 76.59±25.62 99.75±0.28 

ü ü   73.99±22.95 74.92±24.27 78.36±25.14 99.72±0.29 

ü ü ü  74.04±23.18 75.34±24.77 77.69±25.31 99.72±0.28 

ü ü ü ü 74.20±22.94 75.43±24.43 78.04±25.18 99.73±0.29 
The bold numbers represent the best results, and they are presented in the form of ‘mean value 
± standard deviation’. 

 
 
 
 

Table 3.6. Results of SFRN Ablation Study on Two Datasets (Part 2). 

 GSM LRM_FN LRM_FP LRM_CLS FPR‰ FNR‰ p-value 

ST
S 

ü    11.99±19.9 1.71±91.81 1.63×10+V 
ü  ü  3.72±6.34 2.03±1.77 3.15×10+T 
ü ü   8.33±12.86 1.51±1.46 1.28×10+T 
ü ü ü  6.45±8.66 1.44±1.28 0.036 

ü ü ü ü 3.65±5.29 1.05±1.08 - 
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FD
 

ü    3.63±3.77 5.68±15.04 1.28×10+S 
ü  ü  3.49±3.78 5.72±14.89 1.9×10+T 
ü ü   3.59±3.78 5.59±14.92 3×10+T 
ü ü ü  3.41±3.67 5.57±14.93 0.087 
ü ü ü ü 3.24±3.67 5.52±14.90 - 

The bold numbers represent the best results, and they are presented in the form of ‘mean value 
± standard deviation’. 

 

 

Figure 3.5. Four PET-CT studies of lung cancer patients with (a) PET in the first column and 

(b) CT in the second column. The segmentation results from methods using different 

components of the SFRN, including the GSM, the false positive (FP) / false negative (FN) 

reduction within the LRM, and the classification branch, are shown in columns (c) to (g).  The 

red contour outlines the ‘ground truth’ segmentation and the blue contour outlines the results 

from the comparison methods.  

 

3.4 Discussions  

The main findings are that: (i) the SFRN consistently outperformed the state-of-the-art methods 

(a) PET (b) CT (c) GSM (d) LRM_FP (e) LRM_FN (f) LRM (g) SFRN

(i)

(iii)

(ii)

(iv)
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across different datasets; (ii) the self-supervised pre-training strategy improved the segmentation 

performance across each of the component within our SFRN on both STS and FD datasets; (iii) 

the LRM was superior in removing both false positive and false negative regions and thus 

improving the overall segmentation accuracy; (iv) the classification branch effectively decreased 

segmentation errors via the ability to avoid false positive segmentations on healthy regions; and 

(v) the GSM achieved competitive performance by using the self-supervised training when 

compared to the existing methods on both STS and FD datasets. 

 

 

Figure 3.6. Four PET-CT studies of STSs shown on axial image slices with (a) PET in the first 

column, and (b) CT in the second column. The segmentation results of methods using different 

components are shown in columns (c) to (g), where the red contour outlines the ‘ground truth’ 

segmentation and the blue contour outlines the results from the comparison methods. 

 

3.4.1 Comparison to the Existing PET-CT Tumour Segmentation Methods  

With the MICCAI 2022 AutoPET challenge, a competitive segmentation performance was 

(a) PET (b) CT (c) GSM (d) LRM_FP (e) LRM_FN (f) LRM (g) SFRN

(i)

(iii)

(ii)

(iv)
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achieved with the best-performing team (see Table 3.3). The method of the 1st ranked team 

(Blackbean [114]) used larger input image size, and longer training time compared to the SFRN, 

which required more computational resources. Although the 3rd team (FightTumor [115]) 

obtained the least false negative volume, their method utilised extra post-processing steps based 

on the number of connected voxels, and the HU value in the corresponding CT image of their 

generated segmentation outputs,  and ensembled 13 trained models to obtain the final 

segmentation results. The reliance on ensemble limits the generalizability of their model and 

require prior knowledge in medical imaging and parameter tuning. Similarly, the 4th team (UIH-

FL [116]) implemented different post-processing steps based on based on the number of 

connected voxels in the generated segmentation outputs. 

In the Dice metric, the nnUNet outperformed the BDAV on the STS dataset by 1%, but it 

was surpassed on the FD dataset by the BDAV with a margin of 8% (see Table 3.2). The nnUNet 

achieved the best precision (87.11) and specificity (99.92) with the minimum standard deviations 

on the STS dataset (i.e., 19.82 and 0.25 respectively, see Table 3.2), while the sensitivity of 61.63 

was the lowest among all the comparison methods. This was attributed to the fact that nnUNet 

tends to under-segment the tumour regions, which resulted in fewer false-negative errors. As 

shown in Figure 3.3 and Figure 3.4, the segmentation results of nnUNet (column (d)) generally 

produced additional false negative regions (shown in yellow) and fewer false positive regions 

(shown in red) when compared to other comparison methods. When segmenting small tumours, 

such as lung cancers from the FD dataset, the tendency of under-segmenting resulted in failure to 

detect tumours, especially when the tumour region was close to normal organs with much higher 

SUV (e.g., heart, see row (iv) in Figure 3.3). This led to a decreased performance over all the 

evaluation metrics on the FD dataset apart from the consistent best specificity of 99.98 with the 

minimum stand deviation 0.22. 

Although MosNet achieved the highest sensitivity of 76.07 on the STS dataset, however, it 



61  

this was likely attributed to the fact that MosNet is dominant by the modality-specific 

representation features from PET during the experiments, such that tends to overfit to segment all 

the regions with higher SUV values, including normal high uptake regions. Figure 3.4.(h) shows 

example segmentation results, where MosNet over-segmented the bladder region to be part of 

tumour regions. As for lung cancer studies, tumours can be small or share similar anatomy with 

their surroundings, and it is challenging to determine based on the SUV if the pixels in the PET 

image correspond to disease or a benign process (e.g., pneumonia). Such inability resulted in 

missing tumours that were close to normal high-uptake activities (see column (h) in Figure 3.3), 

leading to the poor performance of MosNet on the FD dataset (see Table 3.2). 

There was a consistent trend among U-Net, Co-learning, and MSAM methods on both the 

FD and the STS datasets (see Table 3.2) where MSAM outperformed Co-learning and Co-learning 

outperformed U-Net. Co-learning improved U-Net via the fusion of anatomical and functional 

visual features from PET-CT images, but the fusion approach from Co-learning was not designed 

to capture nuanced morphological details that were more critical in tumour segmentation, which 

resulted in limited performance improvement of less than 1% increase from U-Net in dice score 

on both datasets. Further improvement of MSAM over Co-learning was likely attributed to the 

multimodal spatial attention module, which allowed the network to leverage the PET images as 

an attention map to guide the tumour segmentation on the CT images. Although the precision of 

MSAM was slightly dropped, the dice score increased from 64.25 to 68.13 on the FD dataset and 

from 60.53 to 61.62 on the STS dataset. Nevertheless, our SFRN consistently outperformed the 

state-of-the-art methods across various datasets by introducing the local refinement module to 

remove both the false positive and negative errors. The p-values of comparison methods which 

are smaller than 0.05 indicated that the segmentation outputs of our SFRN were significantly 

different. 

Despite the inability to benchmark the competition results to the SFRN, its performance 
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comparison to BDAV on different datasets can be used to infer SFRN’s performance compared 

to the competition results. The SFRN makes large improvements over the BDAV across all the 

evaluation metrics on two datasets except for the precision value on the FD dataset, where the 

BDAV and SFRN obtained the top two precision scores. The SFRN was also capable of accurately 

delineating both small-sized tumours as well as avoiding including false positive regions with the 

normal physiological process.  

 

3.4.2 SFRN Ablation Study  

Within the SFRN, the ResNet-50 was used as the encoder of the GSM combined with a U-Net 

decoder, while the LRM utilized a standard 2D U-Net as the backbone. When compared to the 

existing supervised methods in Table 3.2, the GSM obtained competitive performance with the 

second-highest Dice score on the STS dataset and the highest Dice score on the FD dataset. It can 

be attributed to the pre-training model via self-supervised contrastive learning on the MICCAI 

2022 AutoPET challenge data. However, the GSM was better at tumour detection and exhibited 

a tendency for over-segmenting the tumour regions (see column (c) in Figure 3.5 and Figure 3.5, 

blue contours tend to cover high SUV regions), which resulted in the highest sensitivity of 83.3 

and the second highest sensitivity of 78.31 on the STS and FD dataset respectively 

The LRM was further divided into three parts: false negative reduction (LRM_FN), false 

positive reduction (LRM_FP), and classification branch (LRM_CLS). As expected, the use of 

LRM_FP and LRM_FN could effectively reduce the corresponding segmentation errors on both 

datasets. Although the improvement in Dice score was relatively small from the LRM_FP, the 

decreased false positive segmentations contributed to a 9% increase in precision on the STS 

dataset, making both the specificity (99.71) and precision (66.41) of LRM_FP the 2nd best on the 

STS dataset. Similarly, the LRM_FP achieved the best precision of 76.35 and the best specificity 

of 99.75 on the FD dataset. In addition, the LRM_FN constrained the CNN to emphasize the 
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neglected cancerous regions, removing the false negative segmentations from the predicted 

output. This led to the highest sensitivity of 78.36 on the FD dataset and the second-best sensitivity 

of 77.75 on the STS dataset. The overall performance could be further improved by integrating 

the LRM_FP and LRM_FN, which contributed a 2% improvement in Dice score along with minor 

enhancement in precision and specificity on both datasets. 

As for the self-supervised pre-training strategy, the pre-trained U-Net achieved an 

improvement of more than 3% in Dice on both datasets (see Table 3). Besides, our strategy 

constantly improved the overall segmentation performance across all the components, i.e., GSM, 

LRM_FP, LRM_FN, and LRM_CLS, on both STS and FD datasets. Although the precision and 

specificity slightly dropped in most of the pre-trained comparison methods in Table 3.4, it was 

expected that the models would tend to over-segment the tumour regions with a better 

perceptiveness obtained from the self-supervised pre-training. Additionally, Our SFRN without 

pre-training obtained Dice scores of 64.04 and 73.66 on the STS and FD datasets respectively (see 

Table 3), which are also competitive with the existing PET-CT tumour segmentation methods. It 

was only outperformed by nnUNet on the STS dataset with a 1.39% in Dice and beat all other 

existing methods on the FD dataset (see Table 3.2). 

Overall, the SFRN obtained the highest Dice score of 67.35 and 74.20 on the STS and FD 

datasets, respectively, by incorporating a classification branch into the LRM, and also achieved 

the highest specificity (99.72) and precision (67.41) on the STS dataset. This was attributed to the 

ability to distinguish benign or cancerous regions in the PET-CT slices, which reduced the false 

positive segmentation on the entire slice, thereby boosting the performance in precision and 

specificity. For instance, Fig 5 row (i) shows the false positive segmentations above the tumour 

which were reduced by using LRM_FP (column (d)), and the false negative segmentations were 

refined into over-segmentation by using LRM_FN (column (e)), then the integration of these two 

components produced a balanced segmentation output that was shown in column (f), which could 
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be further refined by our SFRN with the classification branch. To quantitatively evaluate the 

performance of our SFRN and different components, the number of false positive and false 

negative pixels in each PET-CT slice was calculated for methods using different components. Our 

SFRN obtained the least number of false positive pixels (183.43 on STS, 162.63 on FD) and false 

negative pixels (53.14 on STS, 277.40 on FD) on both datasets (see Table 3.3). All the methods 

contained the LRM_FP segmented fewer false positive pixels in their outputs when compared to 

those without false positive reduction, while those with LRM_FN presented fewer false negative 

pixels in their segmentation results. Therefore, the LRM was consistently superior at learning to 

suppress non-tumour regions (including benign pixels of high intensity) and highlighting tumour 

regions in PET-CT, contributing to overall better segmentation results. 

 

3.5 Summary  

In this chapter, A CNN-based approach is proposed to improve the performance of segmenting 

tumours from multimodal PET/-T images. The SFRN method consists of two main modules, 

namely the global segmentation module and the local refinement module. The global 

segmentation module was designed to coarsely delineate the candidate tumour regions, then the 

candidate tumour regions were refined by removing both false positive and false negative 

segmentation errors via the local refinement module. The encoders in both modules were pre-

trained via self-supervised learning for better feature representation ability of tumours. The 

SFRN surpassed the existing methods for tumour segmentation with PET-CT images on two 

different datasets. 



 
 
Chapter 4. Patient Outcome 
Prediction with Constrained 
Hierarchical Multimodal 
Feature Learning 

 
 
In this chapter, a deep learning-based radiomics method, named the Constrained Hierarchical 

Multimodal Feature Learning (CHMFL), is introduced that is designed for radiomics with 

multimodal PET-CT images. This new radiomics method is capable of integrating functional 

imaging (PET) features with anatomical imaging (CT) features, at different scales, in an end-

to-end iterative manner. In contrast to existing radiomics methods, the CHMFL removes the 

reliance on manual input and prior knowledge in medical images, such as tumour annotations 

and feature selection needed in conventional radiomics. Further, the CHMFL leverages the 

complementary information across different modalities to automatically focus on 

semantically important regions, i.e., tumours. The CHMFL method was evaluated in 

predicting the development of distant metastases (DM) using imaging data before the DM 

developed on a well-established benchmark soft-tissue sarcomas (STSs) PET-CT dataset. The 

experimental results demonstrate that CHMFL achieved overall better performance when 
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compared to the state-of-the-art methods.   

 

4.1 Contributions 

The main contributions of this chapter are as follows: 

1) A constrained feature learning (CFL) module is introduced to spatially guide the network 

training process to focus on the important semantic regions (e.g., tumours). CFL 

formulation enables the targeting of functional ‘hot spots’ in PET which refers to pixels 

with high FDG uptake within the anatomical context of CT. The CFL allows the CNN to 

automatically detect and focus on the tumour, while conventional radiomics and other 

CNN-based radiomics methods with either a single or a multimodal imaging data require 

manual annotations as the input to constrain the feature extraction process within the 

tumour region. 

2) A hierarchical multi-modality feature learning (HMFL) module is proposed that derives 

optimal radiomics features by integrating complementary features across modalities at 

different scales. The formulation of the module combines multimodal features from 

different scales in an iterative manner. In comparison, existing multimodal radiomics 

methods extract imaging features separately from individual imaging modalities and fuse 

the features later or integrate the multi-modal images at an earlier stage. The hierarchical 

combination of features enables a more complex and flexible fusion of PET and CT 

features, e.g., low-level PET texture features from a shallow layer with semantic CT 

features from a deeper layer. 

 

This chapter’s contributions address the challenge of existing multimodal radiomics studies 

mentioned in Chapter 1 and aligns to the gap that there is a need for deep learning methods that 

enable optimal extraction and analysis of information from multimodal PET and CT images in 
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Chapter 2. The chapter also further expand on the literature in Chapter 2.4 by including detailed 

comparisons to the state-of-the-art comparative methods.  

 

4.2 Materials and Methods  

4.2.1 Materials and Pre-processing 

A well-benchmarked public PET-CT STSs dataset from the Cancer Imaging Archive is used 

for method evaluation [7], [97] (see Chapter 3.2.1 Materials and Pre-processing for details). 

 

 

Figure 4.1. The CHMFL architecture. 

 

4.2.2 Overview of the Proposed Method 

In Figure 4.1, the CHMFL architecture was outlined. The volumetric PET and CT images were 

pre-processed and then fed separately into two identical branches. Each branch has multiple 
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down-sampling convolutional layers for feature extraction (as shown within the yellow PET 

and blue CT feature maps in Figure 4.1). The feature maps derived after each convolutional 

layer were adaptively pooled and then concatenated into a single feature vector to facilitate 

hierarchical multimodal feature learning (HMFL). The constrained feature learning (CFL) 

module used several up-sampling convolutional layers to guide the network to focus on the 

important regions (e.g., the tumour). This process also incorporated the fine-grained features 

forwarded from the HMFL module at each level. Finally, the derived multimodal PET-CT 

features (as shown in the left lower part of Figure 4.1) were fed into three fully connected layers 

for distant metastases (DM) prediction. 

 

4.2.3 Constrained Feature Learning (CFL) Module  

The CFL module was designed to guide the learning process to focus on semantically important 

regions at both the training and inference stages. This was achieved by gathering and 

assembling the complementary information from multimodal PET-CT images to obtain a 2-

channel volumetric segmentation output. 4 transposed convolutional blocks were used to 

expand the spatial support from the feature maps at a lower scale for up-sampling. These up-

sampling blocks at different levels shared similar structures (see CFL module in Table 4.1 for 

details). Meanwhile, the multimodal PET-CT features extracted from the HMFL module were 

forwarded to the up-sampling blocks by horizontal connections (see Figure 4.1). In this way, 

the network gathered fine-grained detail for tumour contour prediction that would be otherwise 

lost in the down-sampling path. In turn, tumour regions were emphasized in the HMFL module 

by the backpropagation process. Moreover, in order to avoid the vanishing gradient problem 

with network deepening, a residual learning was formulated after the concatenation of 

forwarded PET-CT features and the corresponding up-sampled feature maps at each level: the 

concatenated feature map was processed through several convolutional layers and non-
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linearities, then added to the output of the last non-linearity within the residual learning. 

 

Table 4.1. Network Architecture Used in the HMFL and CFL Module 

Layers Details (kernel size, stride, 
padding, …) 

Output Size (batch size, 
channel number, …) 

 HMFL Module  

Input Transition Conv3d (5´5´5, 1, 2) 
BatchNorm; ELU 1´16´112´112´144 

Down_Conv_1 Conv3d (2´2´2, 2, 0) 
BatchNorm; ELU 1´32´56´56´72 

Down_Conv_2 Conv3d (2´2´2, 2, 0) 
BatchNorm; ELU  1´64´28´28´36 

Down_Conv_3 Conv3d (2´2´2, 2, 0)  
BatchNorm; ELU  1´128´14´14´18 

Down_Conv_4 Conv3d (2´2´2, 2, 0) 
BatchNorm; ELU  1´256´7´7´9 

 CFL Module  

Up_Conv_1 ConvTranspose3d (2´2´2, 2, 0) 
BatchNorm; ELU 1´128´14´14´18 

Up_Conv_2 ConvTranspose3d (2´2´2, 2, 0) 
BatchNorm; ELU 1´64´28´28´36 

Up_Conv_3 ConvTranspose3d (2´2´2, 2, 0) 
BatchNorm; ELU 1´32´56´56´72 

Up_Conv_4 ConvTranspose3d (2´2´2, 2, 0) 
BatchNorm; ELU 1´16´112´112´144 

Output Transition 
Conv3d (5´5´5, 1, 2) 

BatchNorm; ELU  
Conv3d (1´1´1, 1, 0); SoftMax 

1´2´112´112´144 

 

During the training stage, two loss functions were employed for different tasks. A pixel-

wise cross-entropy loss was used to compare the predicted segmentation output with the ground 

truth tumour annotation. Another cross-entropy loss was used for DM prediction. Given a 

weight 𝑤 for our CFL module 	0 ≤ 𝑤 ≤ 1, the total loss 𝐿 was defined as follows:  

 

𝐿 = −(1 − 𝑤) ∗ ∑ 𝑝",X 𝑙𝑜𝑔 𝑞",X>B?
XB" −𝑤 ∗ ∑ 𝑝?,Y 𝑙𝑜𝑔 𝑞?,YA

YB"  (4.1) 

 

where 𝑝",X represents the target probability of DM, 𝑞",X (the output of this network) 
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represents the predicted probability of developing DM, and 𝑀 denotes the number of output 

neurons generated by the last fully connected layer in this network, 𝑞?,Y ∈ 𝑄 is the predicted 

binary segmentation volume, 𝑝?,Y ∈ 𝑃 is the ground-truth binary annotation image and 𝑁 

denotes the total number of image voxels. 𝑤$ is a weight to balance the two losses. 

 

4.2.4 Hierarchical Multimodal Feature Learning (HMFL) Module  

Five convolutional blocks were used for multimodal image feature extraction (more details of 

the HMFL module are provided in Table 4.1). PET and CT images were processed separately 

by the identical PET and CT branches. Within each convolutional block, the output feature 

map of the 3D convolutional layer was defined as: 

 

F = W * X + b                (4.2) 

 

where X is the input to the convolution layer, ∗ is the convolution operation, 𝑾  denotes 

for the learned weights, and b is the learned bias. A batch normalization layer and a non-linear 

activation function ELU were also added. By performing a 3D convolution with a kernel size 

of (𝑖, 𝑗, 𝑘), the value at the location (𝑥, 𝑦, 𝑧) of the feature map F was determined from its 

neighbourhood: 

 

 𝐹(𝑥, 𝑦, 𝑧) = ∑ ∑ ∑ 𝑾(𝒊, 𝒋, 𝒌) ∗ 𝑿(𝒙 + 𝒊, 𝒚 + 𝒋, 𝒛 + 𝒌)-Z$            (4.3) 

 

with 	− w[
?
x ≤ 𝑖 ≤ w[

?
x , − w\

?
x ≤ 𝑗 ≤ w\

?
x , − w]

?
x ≤ 𝑘 ≤ w]

?
x. 

For hierarchical multimodal feature learning (HMFL), PET and CT feature maps were 

firstly concatenated to include multimodal context information at each scale of the 

convolutional layers. After concatenation, an adaptive pooling layer was used to project the 
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fused feature map into a single vector. This combination of feature maps from different scales 

could obtain both diverse texture details from shallow layers and high-level semantic layers, 

which can be defined as: 

 

𝐹7^.$_Y = 𝐹(⋃ 𝐴𝑃𝐿(𝑭𝒑𝒆𝒕𝒍 Ä𝑭𝒄𝒕𝒍 	)DBV
eB" )Ä𝐹(𝑭𝒑𝒆𝒕𝟓 Ä𝑭𝒄𝒕𝟓 	)                  (4.4) 

 

Where 𝐴𝑃𝐿 denotes the adaptive max pooling layer, and 𝐿 is the number of convolutional 

layers for multi-modal PET-CT feature extraction, and (Ä) represents the concatenation 

operation.  

Multimodal feature maps at each scale were concatenated into a single fully connected 

layer and processed with additional two fully connected layers. ReLU layers and dropout layers 

with a probability of 0.5 were added after each fully connected layer to reduce overfitting. 

 

4.2.5 Implementation Details  

Our method was implemented with PyTorch [110] and ran on an 11GB NVIDIA GeForce GTX 

1080Ti GPU. The learning rate was set to 0.0001 and the batch size was set to 1. Our model 

was initialized using the approach presented in He et al. [111], and adaptive-moment-

estimation (Adam) [117] was used for network optimization. I have further conducted an 

experiment where data augmentation techniques were adopted at the training stage, i.e., 

randomly rotation (90◦, 180◦, or 270◦) in the axial axis and randomly flip in one of all three 

axes (axial, sagittal and coronal), and this comparison experiment was named as 

CHMFL_Agumented. The training was terminated when no further changes in the total loss. 

In our method, the total loss was generally stable after 200 epochs and our CNN model took 

approximately five hours to fine-tune with. In addition, our model took around 10 seconds to 

inference 8 patients; this time is similar to the existing 3D based CNN models. 
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4.3 Experiments and Results  

4.3.1 Experimental Setup  

The following experiments were carried out compared our proposed method to:  

1) state-of-the-art radiomics methods that were separated into 3 categories: 

a. Traditional radiomics: The method proposed in [12] was used, Multiresolution 

auto-correlation handcrafted (HC) clinical texture features were extracted. and 

included: the grey-level co-occurrence matrix (GLCM), grey-level run-length 

matrix (GLRLM), grey-level size zone matrix (GLSZM), and neighbourhood 

grey-tone difference matrix (NGTDM) features. A stepwise forward feature 

selection scheme was performed with multivariable analysis. The optimal 

conventional feature set contained 25 different radiomics features. A random 

forest (RF) classifier was trained with these texture features. This method was 

referred as HC+RF;  

b. CNN-based radiomics method. The method of [90] was reimplemented based on 

the technical details from their paper that used 2D image slices as the input data. 

This method has four main operational layers: 2D convolutional, non-linearity 

(PReLU), max-pooling, and fully connected layers for classification. This method 

was referred as CNLPC.  

c. Hybrid methods that combine CNNs with traditional radiomic components:  

i. The 3DMCL method proposed by [20], which had two branches to 

separately extract features from PET and CT volumes, and then deep 

features were combined with hand-crafted radiomics features and fed into 

fully connected layers to make a final prediction.  
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ii. A hybrid predictive model, comprised of a many-objective radiomics 

(MOR) model and a 3D CNN, which used spatial contextual information 

from PET-CT images that was designed by [21]. The output of the 2 

components was fused through an evidential reasoning approach to predict 

lymph node metastases in head-and-neck cancers. This method was 

referred as MOR+3D CNNs. 

2) Different imaging modalities and different CNN dimensions: All the PET-CT image slices 

containing tumour regions were used as the input for the 2D CNNs-based comparison 

methods. The PET-CT volumes were used, based on the bounding box, as the input for 

the 3D CNNs-based comparison methods. The PET-CT input slices were directly obtained 

from the 3D volumes that went through the same pre-processing steps in Section 2.1. The 

2D and 3D CNNs used a similar architecture to the 3DMCL method that was suggested 

by [20] and the state-of-the-art method in this DM prediction problem for STS patients.  

3) Individual components of the proposed method:  

a. CFL - our proposed method without HMFL module, used PET and CT images as 

input.  

b. Mask + HMFL - our proposed method without CFL module, used PET, CT, and 

tumour label images as input (2-channel PET-label image and 2-channel CT-label 

image).  

The state-of-the-art methods used in our comparisons were those mentioned in the related 

works, and they can be divided into three categories: A holdout 6-fold cross-validation approach 

was used for our method and the comparison methods. The 48 PET-CT data were randomly 

divided into 6 equal-sized subsets and each subset had 8 PET-CT images. For each fold, 5 subsets 

were used to train the network and the remaining subset was used for testing. This process was 

repeated 6 times to assess the 48 PET-CT images. The results presented in Section III are the mean 
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value across all 6 folds.  

 

4.3.2 Evaluation Metrics  

The same evaluation metrics were used for comparison as in the previous chapter (Section 3.3.1), 

Six established evaluation metrics were adopted, including accuracy (Acc.), sensitivity (Sen.), 

specificity (Spe.), precision (Prec.), F1 score (F1), and area under the receiver-operating 

characteristic curve (AUC). The definitions of sensitivity, specificity, and precision are defined as 

in the previous chapter (see Equations 3.7-3.9 in Chapter 3.3.2). For all experimental comparisons 

with our proposed CHMFL method, the p-value with an unpaired student’s t-test was computed. 

The accuracy and F1 score are defined as below: 

 

𝐴𝑐𝑐. = |QH|'|QA|
|QH|'|GH|'|QA|'|GA|

       (4.5) 

 

𝐹1 = ?×hi4j.×l4m.
(hi4j.'l4m.)

       (4.5) 

 

Where 𝑇𝑃𝑠 are the true positive pixels (ROIs), 𝑇𝑁𝑠 are the true negative pixels 

(background), 𝐹𝑃𝑠 are the false positive pixels and 𝐹𝑁𝑠 are the false negative pixels. 

 

4.3.3 Results  

The CHMFL achieved the overall best DM prediction performance with the highest accuracy 

(0.854) and AUC (0.873) - see Table 4.2 and Figure 4.2; Our CHMFL’s F1 score (0.857), 

specificity (0.833) and precision (0.840) ranked at the second place, and sensitivity (0.875) is the 

third best. In addition, our CFL module alone obtained the highest sensitivity (0.958), and our 

Mask + HMFL obtained the highest specificity (0.875) and precision (0.857). 
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Figure 4.2. Classification performance (measured in receiver operating characteristic (ROC) 

curve) of our CHMFL in comparison to other existing radiomics methods. 

 

 

 
Figure 4.3. Classification performance (measured in ROC) of our CHMFL in comparison to 

methods using different modal image and convolutional layers. 

When compared with methods using 2D or 3D CNNs with different modality imaging data 
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(e.g., PET, CT, PET-CT) – see Table 4.3 and Figure 4.3, our CHMFL method outperformed all 

the comparison CNNs based methods regardless of imaging modality and the kernel dimension 

of CNN. 3D CNNs performed better than those using 2D CNNs. Methods based on PET images 

outperformed methods based on CT images.  

 
 
 

Table 4.2. Classification Performance Comparisons with Existing Radiomics Methods 

Methods 
Evaluation Metrics 

Acc. Sen. Spe. Prec. F1  AUC 

HC + RF 

[12] 

0.750 

(0.102) * 

0.792 

(0.125) * 

0.708 

(0.105) * 

0.731 

(0.094) * 

0.760 

(0.102) * 

0.726 

(0.126) * 

CNLPC 

[90] 

0.729 

(0.094) * 

0.792 

(0.188) * 

0.667 

(0.130) * 

0.703 

(0.083) * 

0.745 

(0.109) * 

0.783 

(0.187) * 

MOR + 

3D CNNs 

[21] 

0.729 

(0.111) * 

0.750 

(0.224) * 

0.780 

(0.204) * 

0.720 

(0.112) * 

0.750 

(0.129) * 

0.793 

(0.174) * 

3DMCL 

[20] 

0.854 

(0.085) * 

0.917 

(0.188) * 

0.792 

(0.187) * 

0.815 

(0.168) * 

0.863 

(0.094) * 

0.854 

(0.148) * 

Our Methods 

Mask + 

HMFL 

0.813 

(0.094) 

0.750 

(0.129) 

0.875 

(0.224) 

0.857 

(0.174) 

0.800 

(0.094) 

0.769 

(0.139) 

CFL 
0.813 

(0.102) 

0.958 

(0.102) 

0.667 

(0.209) 

0.742 

(0.145) 

0.836 

(0.066) 

0.852 

(0.155) 

CHMFL 
0.854 

(0.051) 

0.875 

(0.102) 

0.833 

(0.129) 

0.840 

(0.074) 

0.857 

(0.034) 

0.873 

(0.184) 

CHMFL_

Augment 

0.896 

(0.094) 

0.958 

(0.102) 

0.833 

(0.204) 

0.852 

(0.142) 

0.902 

(0.080) 

0.903 

(0.112) 
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Table 4.3. Classification Performance Comparisons with Methods Using Different Modal 

Image and Convolutional Layers  

Methods 
Evaluation Metrics 

Acc. Sen. Spe. Prec. F1  AUC 

2D-CNN-

CT 

0.583 

(0.102) * 

0.708 

(0.292) * 

0.458 

(0.292) * 

0.567 

(0.094) * 

0.630 

(0.155) * 

0.503 

(0.254) * 

2D-CNN-

PET 

0.729 

(0.051) * 

0.542 

(0.129) * 

0.917 

(0.209) * 

0.867 

(0.174) * 

0.667 

(0.051) * 

0.656 

(0.139) * 

2D-CNN-

PET-CT 

0.729 

(0.094) * 

0.792 

(0.188) * 

0.667 

(0.130) * 

0.703 

(0.083) * 

0.745 

(0.109) * 

0.698 

(0.187) * 

3D-CNN-

CT 

0.667 

(0.085) * 

0.667 

(0.213) * 

0.667 

(0.258) * 

0.667 

(0.112) * 

0.667 

(0.131) * 

0.684 

(0.203) * 

3D-CNN-

PET 

0.771 

(0.094) * 

0.750 

(0.188) * 

0.792 

(0.224) * 

0.783 

(0.168) * 

0.766 

(0.094) * 

0.734 

(0.156) * 

3D-CNN-

PET-CT 

0.792 

(0.105) * 

0.792 

(0.209) * 

0.792 

(0.204) * 

0.792 

(0.143) * 

0.792 

(0.111) * 

0.773 

(0.148) * 

Our Methods 

Mask + 

HMFL 

0.813 

(0.094) 

0.750 

(0.129) 

0.875 

(0.224) 

0.857 

(0.174) 

0.800 

(0.094) 

0.769 

(0.139) 

CFL 
0.813 

(0.102) 

0.958 

(0.102) 

0.667 

(0.209) 

0.742 

(0.145) 

0.836 

(0.066) 

0.852 

(0.155) 

CHMFL 
0.854 

(0.051) 

0.875 

(0.102) 

0.833 

(0.129) 

0.840 

(0.074) 

0.857 

(0.034) 

0.873 

(0.184) 

CHMFL_

Augment 

0.896 

(0.094) 

0.958 

(0.102) 

0.833 

(0.204) 

0.852 

(0.142) 

0.902 

(0.080) 

0.903 

(0.112) 

*: p < 0.05, in comparison to our proposed CHMFL method derived from an unpaired 
student’s t-test. 
The results are presented in the form of ‘mean value (standard deviation)’. 
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Figure 4.4. Analysis of the weight used in the CFL module. 

 
 

 
Figure 4.5. The original CT (a) CT and PET (b) PET images of STSs in the calf (top row) and 

thigh (bottom row) and the feature map visualizations from our approach (CHMFL) and the 

other approaches. Images were cropped to the tumour ROI and the red arrows indicate tumour 

regions. Blue in the feature map visualizations indicates low weight, whereas yellow and red 

indicate higher weights. 

 

I evaluated how the CFL module’s weight w affected the performance of CHMFL over 

three key evaluation metrics (e.g., accuracy, sensitivity and specificity). The result in Figure 4.4 

suggests that the best performance was achieved when the weight was 0.5. 

Two example PET-CT studies are shown in Figure 4.5 with corresponding visualization 

results of the extracted feature map with respect to three existing radiomics methods that 

outperformed other comparison methods except for our CFL and CHMFL methods. In Figure 4.5, 
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class activation maps [118] were generated to visualize the predicted class scores on any given 

image. Global average pooling layers were implemented to capture the spatial average of the 

feature map of each unit at the last convolutional layer. A channel-wise sum of these feature maps 

was used to generate the final output (i.e., class activation maps). The discriminative object parts 

detected by the CNNs were highlighted. 

The discriminative ability of both the 3DMCL and our CFL and CHMFL methods is 

depicted in Figure 4.6, via t-distributed stochastic neighbourhood embedding (t-SNE) [119] 

visualization. t-SNE is an unsupervised, non-linear technique primarily used for visualizing high-

dimensional image features in a two or three-dimensional space, which allows for exploring the 

relationship of the extracted features. 

 

 
Figure 4.6 t-SNE visualization result of 3DMCL, CFL and CHMFL methods. A dashed line 

is added to demonstrate how the features are separated. 

 

4.4 Discussions  

The main findings are that: (i) our CFL module automatically identified the tumour and deep 

features learned from tumour segmentation could be useful for patient outcome prediction; (ii) 

our HMFL module derived multimodal PET-CT image features; (iii) our method improved upon 

current single-modality methods and, (iv) our CHMFL outperformed state-of-the-art radiomics 
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methods. 

 

4.4.1 CFL Module Analysis  

The CFL automatically focused on ROIs that were semantically more important to the STSs DM 

predictions. When compared to 3D-CNN-PET-CT (Figure 4.5 (f)), both our CFL and CHMFL 

methods with the CFL module were able to correctly focus on tumour regions in the derived 

feature maps (Figure 4.5(c) and Figure 4.5(d)). In contrast, 3D-CNN-PET-CT falsely concentrated 

on many normal uptake regions, which resulted in a >10% decrease in AUC value and > 4% 

decrease in both accuracy and F1 score (shown in Table II). Moreover, when compared to existing 

methods that segmented tumour region before feature extraction and outcome prediction, such as 

3DMCL (the state-of-the-art method for STS DM prediction, Figure 4.5 (e)), both our CHMFL 

and CFL methods could accurately identify the entire sarcoma with more details. Although Mask 

+ HMFL was forced to focus on the tumour region by incorporating an extra channel of tumour 

label image as input, there were still some false positive regions, e.g., as in the bottom case of 

Figure 4.5 (e) when there were similar tissues around the tumour. Without our CFL module, the 

Mask + HMFL method had a tendency of not predicting DM due to concentrating on more regions 

other than tumours. Although this contributed to a 4% increase in specificity and 1% increase in 

precision, there are >10% decrease in both AUC score and sensitivity when compared with our 

proposed CHMFL (shown in Table 4.2). It was also noted that automatically constraining the 

learning process to extract feature maps only from the tumour region can obtain more information 

that can potentially reflect underlying pathophysiology, such as the heterogeneity of STS, which 

is an important prognostic factor of DM development [120]. In addition, such an automated 

process removes the reliance on accurate manual tumour delineation during the inference stage 

while obtaining better overall performance. 
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4.4.2 HMFL Module Analysis  

The inclusion of HMFL in our method further improved the performance of the CFL. Most 

existing CNNs based radiomics methods, including 3DMCL, CNLPC and MOR+3DCNNs, only 

leverage high-level features extracted from the last convolutional layer in their model, and 

therefore inherently disregarded the complementary PET and CT image features at the lower level 

of the network. In contrast, our method iteratively and hierarchically fused the multimodal PET 

and CT image features across the different image scales, which enabled more flexible and 

complex multimodal information fusion. As an example, the feature map derived from our 

CHMFL method (Figure 4.5 (c)) captured more details inside the tumour better predicted the 

tumour contour when compared with our CFL method (Figure 4.5 (d)). 

 

4.4.3 Evaluation of CNN-Based Methods with Different Image Modalities and Different 

Convolutional Layers  

There was a marked difference in performance between PET-CT CNNs and CNNs with PET 

alone or CT alone. Further, PET-based methods outperformed CT-based methods. This was 

expected since PET images provided metabolism information of tumours, while CT can only 

provide the anatomical information, and tumour regions are not always visible in CT. The 

relatively lower performance of 2D CNNs, when compared to 3D CNNs counterparts is attributed 

to the fact that volumetric image features derived from 3D CNNs are better to discriminate the 

spatial information within the tumour that is associated with the DM development, e.g., volumetric 

tumour shape and size [16]. In contrast, 2D CNNs based methods (e.g., 2D-CNN-CT and 2D-

CNN-PET) have limited representation capability of tumour characteristics in two dimensions 

with few axial slices. Therefore, it would be better to incorporate 3D CNNs with multimodal 

imaging data when the computational power is available, which allows achieving better 

performance (as shown in Table 4.2. 
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4.4.4 Comparison of CHMFL with Existing Methods  

Our CHMFL method obtained the best overall performance when compared with the existing 

radiomics methods. HC+RF method achieved competitive performance over all the evaluation 

metrics except the AUC score when compared with CNLPC and MOR+3DCNNs. Unfortunately, 

the performance of HC+RF was reliant on effective feature handcrafting and tuning a large 

number of parameters, which may limit its generalizability to different datasets. The performance 

improvement from 3DMCL to CNLPC and MOR+3DCNNs was likely due to the use of 

multimodal PET and CT images providing complementary information. When compared to the 

second-best performing method 3DMCL, our method achieved much higher specificity (as shown 

in Table I). 3DMCL is reliant on using single-level image features for prediction, which results in 

3DMCL overfits to the positive prediction of DM. which were unable to discriminate the tumours. 

As exemplified in Figure 4.6 our CHMFL had greater separability between the patients 

with/without DM than both 3DMCL and 3D-CNN-PET-CT, where only a few cases were not 

properly separated. 

 

4.4.5 Limitations and Future Work  

Our focus in the current study was to investigate the prediction of distant tumour spread 

(metastatic disease) in patients with STSs from PET-CT images. Predicting the presence of distant 

metastases (DM) as a binary classification is an abstraction of a time to event prediction problem 

(i.e., estimating the point at which an event occurs). The time to event problem is a more 

complicated modelling challenge than binary classification and may require different 

methodological approaches. In the public dataset used in this chapter, all the patients have a 7-

year follow-up period for outcome observation and DM was generally confirmed within 4 years 

after diagnosis of primary STS; this was appropriate for binary classification. The public dataset 



83  

is small (n=51) and thus there was no separate held-out data used only for testing. Only the mean 

results across all validation experiments were reported. The results may be different with a held-

out cohort in a much larger dataset. I have been actively working on characterizing and annotating 

a much larger soft tissue sarcoma dataset with my colleagues in the research group. Moreover, the 

results have not been generalized to other tumour types or where other imaging modalities are 

employed. In future work I intend to evaluate our approach in non-small cell lung cancer and 

lymphomas, using PET-CT, and also include other parameters such as local tumour recurrences 

and long-term survival. In lymphomas there are generally multiple sites of disease and disease 

recurrence occurs unpredictably and so analysing multiple lesions will be necessary to attempt to 

predict where the disease will occur. I would like to adapt our approach to such a situation, and 

this will require multiple bounding boxes. 

 

4.5 Summary  

In this chapter, a constrained hierarchical multimodal feature learning method was proposed for 

radiomics with multimodal PET-CT images. The proposed method was evaluated in predicting 

the development of distant metastases. The experimental results on a well-established public 

dataset of STSs showed that our method was capable of better identifying PET-CT radiomics 

features in primary tumours that were associated with the development of DM, when compared 

to the state-of-the-art radiomics methods. 
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Chapter 5. Automated 
Multimodal Information 
Fusion for Radiomics via 
Neural Architecture Search 

 
 
In this chapter, a multimodal neural architecture search (MM-NAS) method is introduced for 

multimodal PET-CT information fusion for radiomics analysis. Radiomics methods based on 

convolutional neural networks (CNN) are regarded as the state-of-the-art because they can 

learn high-level semantic image information in an end-to-end fashion. However, majority of 

existing CNN-based radiomics methods were designed for single-modality images such as 

CT and MRI [18], [89], [90]. For the few methods that attempted to fuse multimodal images, 

the focus was on fusing the image features that were separately extracted from the individual 

modalities [19], [20], [88]. In addition, these methods required human expertise to design the 

dataset specific architectures e.g., the number of convolutional layers, the layer to fuse 

multimodal image features. Architecture design and optimization require a large amount of 

domain knowledge such as in validating the architecture performance and tuning the 

hyperparameters. NAS has recently been proposed to simplify the challenges in architecture 
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design by automatically searching for an optimal network architecture based on a given 

dataset; the outputs from the NAS can then be further optimized where necessary. The NAS 

thus enables reduced manual input and reliance on prior knowledge [26]. Investigators have 

attempted to apply the NAS for single-modal medical image related tasks, with the main focus 

on image segmentation [27], [28]. 

In this chapter, a new NAS is designed to automatically derive optimal multimodal 

image features for radiomics studies, including tumour segmentation and patient outcome 

prediction. In contrast to existing radiomics methods, the MM-NAS simplifies the challenges 

in architecture design by automatically searching for an optimal network architecture based 

on a given dataset. The MM-NAS method was designed and evaluated in two well-established 

applications: (i) prediction of distant metastases (DM) development; and (ii) tumour 

segmentation, using a well-established benchmark soft-tissue sarcomas (STSs) PET-CT 

dataset. The experimental results demonstrate that MM-NAS achieved overall better 

performance when compared to the state-of-the-art NAS methods.  

 

5.1 Contributions 

The main contributions of this chapter are as follows: 

1) An iterative bi-level optimisation strategy is proposed to automatically search for a 

suitable CNN architecture for multimodal PET-CT images for radiomics studies. In 

contrast to existing radiomics methods using CNNs that are manually pre-designed with 

fixed architectures, the MM-NAS enables reduced manual input and reliance on prior 

knowledge by automatically building an optimal radiomics CNN architecture based on 

a given dataset. 

2) Different computational cells are introduced as the basic unit that can be stacked 

multiple times to form a CNN. The computational cells share similar functionalities 
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with convolutional blocks in CNNs, where the cells used for down-sampling are 

referred to as reduction cells, while the normal cells do not change the input size. When 

compared to existing NAS methods in medical image analysis that directly search for 

the entire network architecture, searching for the best cell structure is found to be much 

more efficient and the cell itself is more likely to generalise to other problems, such as 

tumour segmentation and patient outcome prediction. 

3) The MM-NAS also enables optimal fusion of PET-CT images for radiomics by 

searching for various fusion modules via different network operations (e.g., 

convolution, pooling, etc.) at different stages of the network. These searched fusion 

modules provide greater flexibility for integrating complementary PET and CT data. 

 

This chapter’s contributions address the challenge in existing deep learning-based methods 

that are reliant on human expertise to design dataset-specific CNN architectures. This challenge 

is referred to in Chapter 1 and aligns with the gap that automated CNN with minimum manual 

input and specialised skillsets are necessary for radiomics with PET-CT images as defined in 

Chapter 2. It further expands on the literature in Chapter 2.4 by including detailed comparisons to 

the state-of-the-art comparative methods.  

 

5.2 Materials and Methods  

5.2.1 Materials and Pre-processing 

A well-benchmarked public PET-CT STSs dataset from the Cancer Imaging Archive is used 

for method evaluation [7], [97] (see Chapter 3.2.1 Materials and Pre-processing for details).  

 

5.2.2 Overview of the Proposed Method 

The MM-NAS was inspired by several existing NAS methods [121]–[123], which are designed 
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to enhance the computational efficiency of CNNs by searching for optimal different 

computational cells (e.g., normal cells and reduction cells). Computational cells are the basic 

building units of CNNs, which can be stacked multiple times to form a powerful architecture. 

To achieve this, the MM-NAS workflow is as follows: (i) searching for the optimal cell 

structure of the encoder based on the given training dataset, and (ii) training the searched CNN 

on the training dataset and then evaluating it on the testing dataset.  

 

 

Figure 5.1. MM-NAS overview – the CNN architecture has multiple different cells (normal, 

reduction); each cell is a directed acyclic graph as the basic unit; directed arrows indicate the 

forward path: (a) initial operations on the edges of each cell are unknown; (b) continuous 

production of alternative cells by SoftMax sampling; and (c) optimal cell architecture after 

iterative bi-level optimization. 

 

5.2.3 Search Space  

In the MM-NAS (as shown in Figure 5.1), every cell is viewed as a directed acyclic graph 

composed of two inputs. The input and output of a normal cell have the same dimensions. 

However, the reduction cell doubles the channel number and reduces the input feature map by 

half. The reduction cell and normal cell are the main types of cells used in the MM-NAS. 
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Within each cell, there are several directional graph nodes with one output node. Additionally, 

a stem block that consists of a 3D convolutional layer and a batch normalisation layer was 

incorporated to facilitate input image transitions. In the proposed method, the outputs of PET 

and CT stem blocks are separately fed into the first normal cell to facilitate the fusion process. 

The output feature maps of the first normal cell then flow into the first reduction cell with the 

sum of PET and CT images, which is also processed by one stem block. The remaining 

reduction cells use the output feature maps from the previous two layers as input. 

Each intermediate node 𝑛$ inside a cell is a latent representation (e.g., a feature map in 

CNNs). The searched operations on edge (𝑖, 𝑗) are represented using the vector 𝒙(𝒊,𝒋)(𝒏𝒋) =

Y𝑥p
($,Z)}𝜎 ∈ 𝑂[ and the vector of all optional operations as 𝐎($,Z) = Y𝜎 �𝑛$; 𝜗p

($,Z)� }𝜎 ∈ 𝑂[, 

where 𝑂 denotes the set of optional operations, 𝜗p
($,Z) denotes the parameters of the operation 

𝜎 on edge (𝑖, 𝑗). Then the intermediate nodes can be computed by the sum of all their 

predecessors:  

 

𝑛Z = 〈𝒙(𝒊,𝒋)(𝒏𝒋), 𝐎($,Z)〉 = ∑ 𝒙(𝒊,𝒋)(𝒏𝒋)𝜎 �𝑛$; 𝜗p
($,Z)�$qZ,p∈s                 (5.1) 

 

A special zero operation is also included to indicate a lack of connection between two 

nodes. The task of learning the cell, therefore, reduces to learning the operations on its edges. 

 

5.2.4 Optimization Strategy  

As all the possible operations are mixed through a SoftMax function, this makes the search 

space continuous: 

 

	𝒙(𝒊,𝒋)(𝒏𝒋) = ∑ 456	(t,
(!,/))

∑ 456	(t
,1
(!,/)),1∈3

p∈s 𝒙𝝈
(𝒊,𝒋)                                    (5.2) 
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Where 𝛼p
($,Z) denotes a probability distribution over the operation set 𝑂. With the 

continuous search space, the searching goal is to jointly learn the architecture 𝛼 and the weights 

𝜃 within all the mixed operations (e.g., weights of the convolution filters). Similar to 

architecture search using reinforcement learning [121], [123] or evolution algorithm [124] 

where the performance of validation dataset is treated as the reward or fitness, the MM-NAS 

aims to optimise the validation loss, but using gradient descent. 

Denote by 𝐿1vw$Y and 𝐿xwe the training and the validation loss. Because both losses are 

determined not only by the architecture 𝛼 , but also by the weights 𝜽 in the network, where	𝜃 =

�,𝜗($,Z)1�(𝑖, 𝑗) ∈ 𝐶�, 𝐶 is the computational cell. The aim of searching for the best architecture 

is to find a proper 𝛼 that minimizes the validation loss  𝐿xwe(𝜃∗(𝛼), 𝛼), where the weights 𝜃 

associated with the architecture are obtained by minimizing the training loss: 

 

min
t
	𝐿xwe(𝜽∗(𝜶), 𝛼)                                              (5.3) 

 

𝑠. 𝑡.		𝜽∗(𝜶) = argmin
z

𝐿1vw$Y(𝜽, 𝛼)                                (5.4) 

 

The nested formulation also emerges in hyperparameter optimization based on gradient 

[125], [126]. This is related in the sense that the architecture 𝛼 can be seen as a distinctive type 

of hyperparameter, despite its dimension being significantly higher than scalar-valued 

hyperparameters, such as the learning rate. As a result, it is more challenging to optimise. 

Evaluating the architecture gradient exactly can be prohibitive due to the expensive inner 

optimization. We, therefore, propose a simple approximation scheme as follows: 
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∇t𝐿xwe(𝜽∗(𝜶), 𝛼) ≈∇t𝐿xwe(𝜽 − 𝛿∇z𝐿1vw$Y(𝜽, 𝛼), 𝛼)                 (5.5) 

 

where 𝜽 denotes the current weights maintained by the algorithm, and 𝛿 is the learning 

rate for a step of inner optimization. The idea is to approximate 𝜽∗(𝜶) by adapting 𝜃 using 

only a single training step, without solving the inner optimization (equation 5.4) completely by 

training until convergence. Related techniques have been used in gradient-based 

hyperparameter tuning [127] and unrolled generative adversarial networks [128]. Note 

equation 5.5 will reduce to ∇t𝐿xwe(𝜃, 𝛼) if 𝜃 is already a local optimum for the inner 

optimization and thus ∇t𝐿1vw$Y(𝜃, 𝛼) = 0. 

 

5.2.5 Implementation Details  

The MM-NAS was implemented using the PyTorch framework [110]. The input image 

size was fixed to 112 × 112 × 144. The operation set 𝐎($,Z) for each cell included 3D standard 

convolutions, 3D separable convolutions, 3D dilated convolutions, 3D max pooling, 3D 

average pooling, skip connections and zero operations. All operations were of stride one (if 

applicable), and the kernel size of pooling operations was 3, while the kernel size for the 

convolutional operations was either set to 3 or 5. During the architecture search step, the cross-

entropy loss was used for training optimization. The parameters of each cell were optimized 

by Adam optimizer with a learning rate of 0.0005 while the weight in the whole network was 

optimized by SGD with a learning rate of 0.0001, and the batch size was set to 1. 

In order to evaluate the MM-NAS in both predicting DM and segmenting tumours of 

STSs, there were modifications for task-specific implementations. For DM prediction, the 

output feature maps of the last reduction cell were fed into two convolutional layers and one 

fully connected layer for classification. As for the task of tumour segmentation, the common 

encoder-decoder structure for segmentation tasks was utilised where only the encoder 
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architecture was searched while the decoder was directly taken from a standard U-Net. The 

encoder architecture consisted of three branches, each of which shared the exact same structure 

as shown in Figure 5.1. These branches were designed to be automatically searched for learning 

and utilising the PET, CT and concatenated PET-CT images, respectively. 

With the 40 PET-CT volumetric training images searching the architecture for the task 

of DM prediction, it took approximately 3 minutes to process one epoch, and the best 

architecture was obtained at epoch 70 out of the total 200 epochs. As for training the searched 

architecture, cross-entropy loss with Adam was used for training optimization in the second 

step. The learning rate was set to 0.001 and batch size was set to 1, and it took around 2 minutes 

to train one epoch, the best model was obtained at approximately epoch 80 out of 200 epochs. 

As for the task of tumour segmentation using the same volumetric data, it took 

approximately 8 minutes to run one epoch, and the best architecture was obtained at epoch 120 

out of the total 200 epochs. As for training the searched architecture, weighted cross-entropy 

loss with Adam was used for training optimization in the second step. The learning rate was 

set to 0.001 and batch size was set to 1, and it took around 4 minutes to train one epoch, the 

best model was obtained at approximate epoch 70 out of 200 epochs. All the experiments were 

conducted on an 11GB NVIDIA GeForce GTX 2080Ti GPU. 

 

5.3 Experiments and Results  

5.3.1 Experimental Setup  

The following comparison experiments were conducted for DM prediction:  

1) a comparison with the state-of-the-art radiomics methods: 

a. HC+RF – I followed the conventional radiomics method and used hand-crafted 

(HC) features (e.g. intensity solidity, skewness, grey-level co-occurrence matrix 
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features, etc.) extracted from tumour region with random forest (RF) as the 

classifier for prediction [12];  

b. DLHN – a deep learning based radiomics method using a 2D CNN to predict head 

& neck cancer outcomes (e.g., DM, loco-regional failure, and overall survival) 

[90];  

c. 3DMCL – a deep learning based multimodal collaborative learning method using 

3D CNN for distant metastases prediction with PET-CT images [20]. 

2) compared the performance of using multimodal CNNs to single-modality CNNs.  

3) compared the performance of using 2D CNNs with 3D CNNs for radiomics.  

Similarly, the following comparison experiments were conducted for tumour segmentation:  

1) a comparison with the state-of-the-art radiomics methods: 

a. Co-learning – a two-branched U-Net was designed to extract and fuse PET and 

CT information with spatial context across multiple CNN blocks [63];  

b. NAS-Unet – a U-like backbone network with a differential architecture strategy, 

which contained three types of primitive operation set on search space to 

automatically find two cell architecture DownSC and UpSC for semantic image 

segmentation [129];  

c. V-NAS – a differentiable neural architecture search method for volumetric 

medical image segmentation, the network itself chose between 2D, 3D or Pseudo-

3D convolutions at each layer. [130]. 

d. MM-MRI-NAS – A brain tumour segmentation method designed for volumetric 

multimodal MRI images, patching strategies were utilised for the input data, and 

there are two types of cells to be automatically searched (downward cell and 

upward cell) [131]. 
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2) compared the performance of using multimodal CNNs to single-modality CNNs.  

3) compared the performance of using 2D CNNs with 3D CNNs for tumour segmentation.  

A 6-fold cross-validation approach was used for the MM-NAS and the comparison methods. 

In each-fold cross-validation, 40 PET-CT images were used for training and the remaining 8 

images were used for testing.  

 

5.3.2 Evaluation Metrics  

The same evaluation metrics for comparison were used as in the previous chapter (Chapter 

4.3.2), including accuracy (Acc.), sensitivity (Sen.), specificity (Spe.), precision (Prec.), F1 score 

(F1), and area under the receiver-operating characteristic curve (AUC). 

Moreover, five commonly used evaluation metrics were adopted for the tumour 

segmentation, including Dice score, intersection over union (IoU), sensitivity (Sen.), specificity 

(Spe.) and accuracy (Acc.), most of which are also introduced in Chapter 3.3.2. The IoU is defined 

as follows: 

 

𝐼𝑜𝑈 = |<Q∩H=|
|<Q∪H=|

       (5.6) 

 

Where 𝐺𝑇 denotes the ground truth, 𝑃𝑆 is the algorithm predicted segmentation result. 

 

5.3.3 Results  

The receiver-operating characteristic (ROC) curve is shown in Figure 5.2. It shows that our 2D 

MM-NAS achieved better performance in DM prediction when compared with 2D CNN-based 

methods. Our 3D MM-NAS outperformed other 3D CNN-based comparison methods and 

achieved the overall best performance. 
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Table 5.1. Comparisons with Existing Radiomics Methods on DM Prediction 

Methods 
Evaluation Metrics 

Acc. Sen. Spe. Prec. F1 AUC 

HC+RF [12] 0.750 0.792 0.708 0.731 0.760 0.726 

DLHN [90] 0.729 0.792 0.667 0.703 0.745 0.698 

3DMCL [20] 0.854 0.917 0.792 0.815 0.863 0.854 

2D MM-NAS (Ours) 0.750 0.833 0.667 0.714 0.769 0.711 

3D MM-NAS (Ours) 0.896 0.917 0.875 0.880 0.898 0.896 

 
 
Table 5.2. Comparison of Methods using Different Imaging Modalities with Convolutional 

Kernels for DM Prediction 

Methods 
Evaluation Metrics 

Acc. Sen. Spe. Prec. F1 AUC 

2D CT CNN 0.583 0.708 0.458 0.567 0.630 0.503 

2D PET CNN 0.729 0.542 0.917 0.867 0.667 0.656 

2D PET-CT CNN 0.729 0.792 0.667 0.703 0.745 0.698 

2D MM-NAS (Ours) 0.750 0.833 0.667 0.714 0.769 0.711 

3D CT CNN 0.667 0.667 0.667 0.667 0.667 0.684 

3D PET CNN 0.771 0.750 0.792 0.783 0.766 0.734 

3D PET-CT CNN 0.792 0.792 0.792 0.792 0.792 0.773 

3D MM-NAS (Ours) 0.896 0.917 0.875 0.880 0.898 0.896 

 
 

Table 5.1 and Table 5.2 present results of 3D MM-NAS achieving the best outcomes for 

DM prediction in all measures with an AUC value of 0.896, an accuracy of 0.896, a sensitivity of 

0.917, a specificity of 0.875, a precision of 0.880, and an F1 score of 0. 898.  
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Figure 5.2. ROC curves of ours and comparative radiomics methods. 

 

 
Figure 5.3. The comparison between (a) the simplified fusion approach of the DLHN and the 

3DMCL for DM prediction; (b) the learned normal cell of the MM-NAS for PET-CT fusion. 

 
Table 5.3. Comparison of the state-of-the-art methods on STSs segmentation 

Methods 
Evaluation Metrics 

Dice IoU Sen. Spe. Acc. 

Co-learning [63] 0.616 0.501 0.697 0.996 0.992 

NAS-Unet [129] 0.532 0.409 0.670 0.994 0.989 

V-NAS [130] 0.529 0.390 0.678 0.992 0.990 

MM-MRI-NAS [131] 0.526 0.372 0.856 0.990 0.988 

2D MM-NAS (Ours) 0.621 0.531 0.746 0.994 0.991 

 
 

Table 5.3 and Table 5.4 presents results of 2D MM-NAS which resulted in the best 

performance for tumour segmentation in all measures with the highest dice score of 0.621, and 

the highest IoU of 0.531, accuracy (0.991), sensitivity (0.746), and specificity (0.994) are second-
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best among the comparison methods. Figure 5.3 presents two examples of PET-CT studies with 

STS which shows that the MM-NAS delineated the tumour region with a better result when 

compared to other existing NAS methods. 

Figure 5.3 is a comparison between the simplified fusion approach of common radiomics 

methods and one example of the normal cell learned via MM-NAS for multimodal PET-CT 

fusion, which enables flexible fusion with more options for different operations. 

 

Table 5.4. Comparison of Methods using Different Imaging Modalities with Convolutional 

Kernels for STSs segmentation. 

Methods 
Evaluation Metrics 

Dice IoU Sen. Spe. Acc. 

2D CT V-Net [107] 0.376 0.269 0.568 0.983 0.978 

2D CT U-Net [85] 0.465 0.364 0.554 0.993 0.990 

2D PET U-Net 0.607 0.492 0.757 0.994 0.990 

2D PET-concat-CT U-Net 0.608 0.493 0.707 0.996 0.992 

2D PET-sum-CT U-Net 0.603 0.484 0.748 0.994 0.991 

2D MM-NAS (Ours) 0.621 0.531 0.746 0.994 0.991 

3D CT V-Net [107] 0.416 0.268 0.514 0.980 0.970 

3D CT U-Net [85] 0.452 0.310 0.485 0.986 0.976 

3D PET U-Net 0.546 0.400 0.626 0.986 0.980 

3D PET-concat-CT U-Net 0.521 0.392 0.680 0.994 0.992 

3D PET-sum-CT U-Net 0.555 0.408 0.606 0.988 0.980 

3D MM-NAS (Ours) 0.604 0.457 0.628 0.988 0.982 

 
 
5.4 Discussions  

The main findings are that the MM-NAS: (i) performed better than the commonly used radiomics 

methods for DM prediction and tumour segmentation, (ii) derived optimal multimodal radiomics 

features from PET-CT images and, (iii) removed the reliance on prior knowledge when building 
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the optimal CNN architecture. 

 

 
Figure 5.4. Two examples of PET-CT studies with STS are shown on axial image slices with 

(a) CT in the first column, (b) PET in the second column, and (c) ground truth (GT) in the third 

column. The segmentation results from the different state-of-the-art NAS methods are 

presented in columns (d) to (f), and our MM-NAS is (g). 

 

5.4.1 Comparison to Existing Methods  

The improved performance of the MM-NAS is attributed to the search for the optimal 

computation cells, within the NAS, that allowed for fusing multimodal image features at different 

stages of the network. Existing approaches often choose to fuse the separately extracted feature 

maps (after several convolutional / pooling layers). The MM-NAS derived cell structure offers 

more freedom to integrate multimodal images via various operations and connections (see Figure 

5.4), thus producing the optimal radiomics features to predict distant disease. The state-of-the-art 

method of 3DMCL outperformed HC+RF and DLHN due to the collaborative learning of both 

pre-defined radiomics features and deep features, whereas the MM-NAS obtained better 

performance over all the evaluation metrics without feature handcrafting. Thus, the elimination of 

prior knowledge could contribute to better generalizability for applications in other radiomics 

studies. 

For the segmentation task, the NAS-Unet and V-NAS are designed for single-modality 

(a) CT (b) PET (c) GT (e) MM-MRI-NAS(d) NAS-Unet (f) V-NAS (g) MM-NAS
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medical images only, which are not suitable for multimodal PET-CT images. This resulted in 

poorer performance than the MM-NAS and Co-learning (see Table 5.3). Co-learning improved 

over the single-modality NAS methods via the fusion of anatomical and functional visual features 

from PET-CT images, but the fusion approach from Co-learning was not designed to capture fine 

details that are more critical in tumour segmentation, which results in false negative segmentation 

errors. Although the MM-MRI-NAS was designed for multi-modal medical imaging data, the 

patch strategy loses global and spatial information of the tumour region regarding the 

comprehensive image, especially when some STSs are larger than the patch size that is designed 

for the brain tumours in MRI images. This also resulted in the MM-MRI-NAS to under-segment 

the tumour regions without sufficient spatial information (see Figure 5.4).  

 

5.4.2 Comparison among Single-Modality and Multimodal PET-CT Images 

The differences between PET-CT CNN and CNN with PET or CT alone show the advantage of 

incorporating multimodal information. Across the single-modality CNNs, PET-based methods 

outperformed CT-based methods (see Table 5.2). This was ascribed to the functional features, 

which can better characterize the tumour, when compared to anatomical features from CT that 

rely on changes in size which are often a later development. Such features from PET could 

potentially uncover functional information that relates to the biological behaviour of tumours [2]. 

Similar performance is also presented on the task of STSs segmentation (see Table 5.4), 

methods using PET outperform those using CT images only, and the performance is consistent 

within comparison methods using 2D and 3D CNNs. Moreover, the methods using concatenated 

PET-CT images or element-wise fused PET-CT images show better performance than all the other 

methods only using single modality data. 

 

5.4.3 Analysis of Methods using 2D or 3D CNNs   



99  

When compared to 3D CNNs, the relatively poor performance of 2D CNNs in DM 

prediction is expected (see Table 5.2). This is attributed to the fact that volumetric image features 

derived from 3D CNNs are better able to derive spatial information e.g., volumetric tumour shape 

and size. Spatial information has strong correlations to DM predictions [16]. 

However, the 3D CNNs obtained slightly worse results on the task of STSs segmentation, 

this is due to the fact that, given the same computational resources as the patient outcome 

prediction, fewer nodes are designed in each cell and fewer operations are allowed within each 

node for searching the optimal architecture for STSs segmentation. The Dice score of 3D MM-

NAS is only 0.018 lower than that of 2D MM-NAS (see Table 5.4). If the same search space is 

provided with more computational resources, the 3D MM-NAS has great potential in 

outperforming the 2D version. 

 

5.4.4 Limitations and Future Work  

The focus in the current study was to investigate the automated ways of fusing multimodal PET-

CT information in radiomics. But only one small public dataset of 51 patients was used, and the 

generalisability of the MM-NAS in different cancers has not been investigated, which could be 

for future research direction. In future work, if there will be more computational resources, I would 

like to improve the segmentation results of the 3D MM-NAS, further upgrading the NAS methods 

with more flexibility and robustness. Moreover, I intend to evaluate the MM-NAS in non-small 

cell lung cancer and lymphomas, using multimodal PET-CT images, and also attempt to predict 

various outcomes of cancer patients, such as local tumour recurrences and where the disease will 

occur. 

 

5.5 Summary  

In this chapter, a multimodal neural architecture search method (MM-NAS) was proposed for 
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multimodal PET-CT images in radiomics studies. The MM-NAS method automatically searches 

for a CNN architecture which can then be used to fuse and derive optimal PET-CT image features 

for multimodal radiomics studies. This enabled reduced prior knowledge and minimum manual 

input for existing CNN-based methods. The experimental results on a well-established public 

dataset of STSs showed that the automatically generated PET-CT image features are the most 

relevant for DM prediction and are capable of accurately segmenting the tumour regions. 
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Chapter 6. Conclusions and 
Future Work 
 
 
6.1 Conclusions  

Radiomics has become an important prognostic tool in cancer management within the realm of 

modern healthcare, and deep learning-based methods are regarded as the state-of-the-art in this 

field. This thesis has addressed several challenges and limitations associated with the application 

of deep learning techniques to multimodal PET-CT images, and has proposed solutions to enhance 

its practicality and effectiveness. The following innovative methods were presented in this thesis: 

1. A new Self-supervised enabled False positive and False negative Reduction Network 

(SFRN) for tumour segmentation in multimodal PET-CT images (Chapter 3). This 

addresses the challenge of automated tumour segmentation in radiomics where robust 

methodologies are anticipated for multimodal PET-CT images. This also resolves the need 

for algorithms that are less dependent on labels, such as with semi- and self-supervised 

methods. Experimental results with three multimodal PET-CT datasets (one public 

challenge dataset, one public soft-tissue sarcomas (STSs) dataset and one in-house lung 

cancer data) show that the SFRN achieved consistently better segmentation results when 

compared to the state-of-the-art methods.   
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2. A new constrained hierarchical multimodal feature learning (CHMFL) method for patient 

outcome prediction with multimodal PET-CT images (Chapter 4). This addresses the 

problem of optimal extraction and analysis of prognostic information from multimodal 

PET-CT images in the field of radiomics, where complementary features from both 

modalities are incorporated. The CHMFL method is evaluated in predicting the 

development of distant metastases (DM) using imaging data before the DM developed on 

a well-established benchmark PET-CT STS dataset. The experimental results demonstrate 

that CHMFL achieved overall better performance when compared to the state-of-the-art 

methods.   

3. A new multimodal NAS (MM-NAS) method to automatically search for a multimodal 

CNN architecture for use in PET-CT radiomics studies (Chapter 5). This addresses the 

limitation of reliance on human expertise to design dataset-specific and task-specific CNN 

architectures in the field of radiomics, easing the subsequent manual designs. Thus, the 

final architecture of CNN in multimodal radiomics can be achieved more efficiently. The 

MM-NAS method is designed and evaluated in two well-established applications: (i) 

prediction of DM development; and (ii) tumour segmentation, using a well-established 

benchmark PET-CT STS dataset. The experimental results demonstrate that MM-NAS 

achieved overall better performance when compared to the state-of-the-art NAS methods. 

 

6.2 Future Work 

There are several interesting areas for advancing deep learning-based radiomics studies in 

multimodal PET-CT images.  

While this thesis has primarily focused on the application of multimodal PET-CT in cancer 

risk assessment, it's important to recognize that the medical field encompasses a wide variety of 

data modalities, including MRI, patient clinical reports, and laboratory results, among others. An 
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exciting direction in radiomics involves the integration of these diverse data modalities alongside 

PET-CT, aiming to move beyond reliance solely on PET-CT data. Such integration holds the 

promise of providing complementary insights from various modalities, potentially enhancing 

disease diagnosis and treatment planning [132]. However, this endeavour calls for the 

development of intricate and innovative deep learning frameworks and network architectures 

capable of handling "omni-modality" data. This research direction becomes even more 

compelling when combined with cutting-edge deep learning techniques, such as transformers 

inspired by natural language processing [133]. 

In addition, predicting the presence of DM as a binary classification is an abstraction of a 

time-to-event prediction problem (i.e., estimating the time point at which an event occurs). The 

time-to-event problem poses a more complicated modelling challenge than binary classification 

and may require different methodological approaches. The public STS dataset utilized in this 

thesis features patients with a 7-year follow-up period for outcome observation, with DM 

generally confirmed within 4 years after primary STS diagnosis, making it appropriate for binary 

classification, but not feasible for time point prediction. The dataset's limited size (n=51) also 

precluded the use of separate held-out data for testing. A more extensive STS radiomics dataset, 

if available, would facilitate further evaluation and exploration.  

While this thesis has demonstrated DM prediction in STS, the method's generalization to 

other tumour types, such as NSCLC and lymphomas, represents a promising direction. 

Additionally, exploring alternative outcomes, such as local tumour recurrences and long-term 

survival, could expand the applicability of the radiomics framework. In lymphomas, where 

multiple disease sites are common, and disease recurrence occurs unpredictably, analysing 

multiple lesions will be essential to predict the disease's location. My radiomics framework can 

be adapted to such a situation by designing and modifying the input data and network architecture, 

and the suitable input data will require bounding boxes for all lesions on the images. 
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Furthermore, it is worth noting that the current exploration of CNN-based methods 

primarily revolves around supervised deep learning. These methods, although effective, are reliant 

on the availability of annotated training data. Chapter 3 of this thesis has partially validated the 

efficacy of a self-supervised learning (SSL) strategy for pre-training, demonstrating improved 

performance through enhanced representation capabilities of tumour regions. However, in the 

context of multimodal medical imaging, most existing SSL methods lack the capacity to harness 

cross-modality complementary information. Prior research efforts have primarily concentrated on 

domain adaptation or cross-modality image registration, with a focus on MRI and CT images 

[134]–[136]. These methods depend on shared anatomical information across different 

modalities, such as T1-weighted and T2-weighted MRI, and CT images, to generate supervision 

information for the SSL network. This requirement fundamentally differs from the needs of 

multimodal PET-CT images, which offer distinct yet complementary functional (from PET) and 

anatomical (from CT) information. Therefore, existing multimodal SSL methods are not directly 

applicable to multimodal PET-CT images, highlighting the pressing need for the development of 

accurate and robust SSL methodologies tailored to this specific domain. 

The demand for such methodologies extends beyond the scope of this thesis and has the 

potential to impact various facets of PET-CT image analysis, including radiomics, registration, 

and detection. Future research in this direction holds great promise and can substantially enhance 

the understanding and utilization of multimodal PET-CT data in clinical practice, such as 

treatment planning, therapy response assessment, etc. 
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