382 research outputs found

    Fast Optimal Transport Averaging of Neuroimaging Data

    Full text link
    Knowing how the Human brain is anatomically and functionally organized at the level of a group of healthy individuals or patients is the primary goal of neuroimaging research. Yet computing an average of brain imaging data defined over a voxel grid or a triangulation remains a challenge. Data are large, the geometry of the brain is complex and the between subjects variability leads to spatially or temporally non-overlapping effects of interest. To address the problem of variability, data are commonly smoothed before group linear averaging. In this work we build on ideas originally introduced by Kantorovich to propose a new algorithm that can average efficiently non-normalized data defined over arbitrary discrete domains using transportation metrics. We show how Kantorovich means can be linked to Wasserstein barycenters in order to take advantage of an entropic smoothing approach. It leads to a smooth convex optimization problem and an algorithm with strong convergence guarantees. We illustrate the versatility of this tool and its empirical behavior on functional neuroimaging data, functional MRI and magnetoencephalography (MEG) source estimates, defined on voxel grids and triangulations of the folded cortical surface.Comment: Information Processing in Medical Imaging (IPMI), Jun 2015, Isle of Skye, United Kingdom. Springer, 201

    Population-based fitting of medial shape models with correspondence optimization

    Get PDF
    pre-printA crucial problem in statistical shape analysis is establishing the correspondence of shape features across a population. While many solutions are easy to express using boundary representations, this has been a considerable challenge for medial representations. This paper uses a new 3-D medial model that allows continuous interpolation of the medial manifold and provides a map back and forth between it and the boundary. A measure defined on the medial surface then allows one to write integrals over the boundary and the object interior in medial coordinates, enabling the expression of important object properties in an object-relative coordinate system.We use these integrals to optimize correspondence during model construction, reducing variability due to the model parameterization that could potentially mask true shape change effects. Discrimination and hypothesis testing of populations of shapes are expected to benefit, potentially resulting in improved significance of shape differences between populations even with a smaller sample size

    HALOS: Hallucination-free Organ Segmentation after Organ Resection Surgery

    Full text link
    The wide range of research in deep learning-based medical image segmentation pushed the boundaries in a multitude of applications. A clinically relevant problem that received less attention is the handling of scans with irregular anatomy, e.g., after organ resection. State-of-the-art segmentation models often lead to organ hallucinations, i.e., false-positive predictions of organs, which cannot be alleviated by oversampling or post-processing. Motivated by the increasing need to develop robust deep learning models, we propose HALOS for abdominal organ segmentation in MR images that handles cases after organ resection surgery. To this end, we combine missing organ classification and multi-organ segmentation tasks into a multi-task model, yielding a classification-assisted segmentation pipeline. The segmentation network learns to incorporate knowledge about organ existence via feature fusion modules. Extensive experiments on a small labeled test set and large-scale UK Biobank data demonstrate the effectiveness of our approach in terms of higher segmentation Dice scores and near-to-zero false positive prediction rate.Comment: To be published in proceedings of Information Processing In Medical Imaging (IPMI) 202
    • …
    corecore