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Abstract. A crucial problem in statistical shape analysis is establishing
the correspondence of shape features across a population. While many
solutions are easy to express using boundary representations, this has
been a considerable challenge for medial representations. This paper uses
a new 3-D medial model that allows continuous interpolation of the me-
dial manifold and provides a map back and forth between it and the
boundary. A measure defined on the medial surface then allows one to
write integrals over the boundary and the object interior in medial co-
ordinates, enabling the expression of important object properties in an
object-relative coordinate system. We use these integrals to optimize cor-
respondence during model construction, reducing variability due to the
model parameterization that could potentially mask true shape change
effects. Discrimination and hypothesis testing of populations of shapes
are expected to benefit, potentially resulting in improved significance of
shape differences between populations even with a smaller sample size.

1 Introduction

In questions of statistical shape analysis, the foremost is how such shapes should
be represented. The number of parameters required for a given accuracy and the
types of deformation they can express directly influence the quality and type
of statistical inferences one can make. Most methods of establishing correspon-
dence in a population use features on the boundary [1-4], since in many imaging
modalities the interior of objects have a uniform appearance with poorly local-
ized features. However our research uses a medial model parametrization, which
represents a solid object using a skeleton of a lower dimension and naturally
expresses intuitive changes such as “bending”, “twisting”, and “thickening”, but
where establishing correspondence is more difficult. As a descriptor of shape,
the medial axis can be used to provide a detailed quantitative and qualitative
analysis that simpler object descriptors, such as volume, surface area, pose, etc.,
cannot. Pizer et al. give an overview and comparison of definitions and numer-
ous methods for computing of a medial axis [5]. Yet the reversal of the original
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Fig. 1. A dense sampling of a medial model of a left caudate defined continuously using
subdivision surfaces, with volume overlap Vpice = 93.46%.

relationship, from an object describing a medial axis to a medial axis describing
an object, is the critical idea that makes medial representations effective im-
age analysis tools. It replaces an inherently unstable and ill-defined problem—
computing the medial axis of an object from its boundary—with a well-defined
and stable one: computing the boundary of an object from its medial axis. An
object is then modeled by deforming a template medial axis until the associated
boundary matches that of the target object.

Naf et al. use the medial axis to measure local bone thickness and to describe
the sulco-gyral foldings of the human brain [6]. Zhang et al. use the medial axis
for articulated shape matching [7]. They use Siddiqi et al.’s shock detection algo-
rithm to construct the medial axis and classify the voxels according to Giblin and
Kimia’s taxonomy directly via [8]. Golland et al. use “fixed-topology skeletons”
for 2D shape classification [9, 10]. Similar to Golland’s fixed-topology skeletons,
Pizer et al. introduce a sampled medial representation called (discrete) m-reps
used for segmentation [11,12]. Bouix et al. apply the medial axis to estimate the
local width of the hippocampus [13]. They propose two different approaches to
solving the problem of identifying corresponding points between different sub-
jects: projecting the axis onto a plane and rigidly aligning it or using nonlinear
deformations to warp the axis to a common template shape. Styner et al. [14] use
sampled medial descriptions for shape modeling and analysis in clinical studies
of hippocampi and lateral ventricles. They use boundary correspondence estab-
lished via spherical harmonics (SPHARMS) when initializing the medial model
fitting process, but do not enforce it during the individual optimization for each
subject, allowing features to wander independently.

Statistical analysis of populations requires appropriate solutions for robust
parameterizations of shape models and establishing correspondence across a class
of objects that is meaningful given the specific task and application domain.
An inherent problem in any shape representation, one must ensure that the
parameters of the representation in some sense control the “same” features of
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the resulting shape. Otherwise, noise in the parameterization can overwhelm the
size of any shape change effect, reducing or eliminating the power of the tests.

The method presented here does not provide yet another means for deter-
mining the correspondence between shapes. Instead, it takes the stance that
correspondence is inherently specific to the problem domain. Without some in-
put governing the process whereby the representation is constructed results are
unpredictable. Our modeling scheme can use any existing correspondence on the
boundary, defined via prior or learned knowledge of the target population, to
establish correspondence on the medial representation. This in turn requires a
unique link between locations on the boundary and on the medial parametriza-
tion. In principle, the medial geometry provides an intrinsic link between the
boundary and the medial axis that allows one to use the appropriate representa-
tion for the desired analysis task. Every (non-singular) point on the medial axis
lies at the center of ball which is tangent to the boundary in two places, and the
field of vectors from the points on the axis to their associated points of tangency,
called spokes, provides this link. This relationship was explored in [15], and [16,
17] provide an analysis of the differential geometry in arbitrary dimension. How-
ever with the discrete version of m-rep models [11], the connection with the
boundary is given only at a coarse set of discrete points and the interpolation
given by [18] to recover a dense sampling does not respect the intrinsic medial
geometry. Correspondence is established only approximately using a regularizing
term in the model fit optimization, which requires determining an appropriate
weight and trades off homology for goodness of fit. More recent work on inter-
polation does respect the intrinsic medial geometry [19], but it sacrifices the
uniqueness of the representation, requires expensive numeric integration, and
only approximately interpolates the original model.

An alternative approach to discrete skeletons, cm-reps, considers the dual
problems of designing a discrete computer representation and computing a con-
tinuous mathematical representation from it as a coupled system [20-23]. A
continuous representation inherently provides the necessary connection between
the medial axis and the boundary and thus is chosen for this paper.

2 Group-wise model fitting with explicit correspondence
optimization

This paper addresses the problem of producing a collection of models that rep-
resent a set of shapes to be used in statistical tests. The basic approach is to
start with a template object, described medially with a fixed branching topol-
ogy, to align a copy of that template to each target shape, and then to deform
it to match. This work only considers fitting a model to an existing, segmented
shape, such as a binary image or a triangulated surface.

The following sections begin by describing a method for sampling a contin-
uous medial axis and then show how this sampling can be used to approximate
medial integrals. The complete process for fitting a single model to a single target
shape follows. This involves aligning a template to the target shape and deform-
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Fig. 2. The entire population of objects is mapped to a common coordinate system to
optimize correspondence.

ing it using a multi-scale constrained optimization. Finally, the process for a
single shape is extended to a technique for producing a population of models
with a common correspondence. This is integrated directly into the deforma-
tion stage by constructing deformations approximately transverse to the fitting
process. The models are mapped to a common coordinate system and the con-
trol points are adjusted to achieve a parameterization that matches an explicit
correspondence given on the boundary, as illustrated in Figure 2. This is done
by taking advantage of the inherent link between the boundary and the medial
axis given by a continuous medial model, moving the problem of formulating
correspondence to the boundary, where most of the information lies.

The specific discretized representation for the target shapes used here are
binary images, I(x) : R® — {0,1}, defined to be 1 when z is in the shape’s
interior, and 0 elsewhere. Other representations like triangle meshes could be
used as well, as described in [24].

2.1 Approximating Medial Integrals

The main mathematical tool used in this paper is the medial integral, which we
approximate via numeric integration. This section describes the procedure.

Sampling the Medial Axis. The first step is to define a sampling of the medial
axis. We use the subdivision surface approach presented in [23] for our 3D contin-
uous medial axis representation, illustrated in Fig. 1. This divides the medial axis
into a fixed number of patches which can be evaluated analytically at arbitrary
points using B-splines or other fast evaluation methods [25]. Each patch gives
a continuous function m, the position of a point on the axis, and r, the radius
of the maximally inscribed sphere, defined over a square domain (u,v) € [0, 1]
The exact expressions for m and r and their derivatives can be found in [24] and
are omitted for space reasons. The unit spoke vectors U* pointing towards the
two points of tangency on the boundary and the two boundary points themselves
are computed directly from derivatives of m and r by

Ut =-Vr+1-||Vr|2-N, Bf =m+rU*, (1)
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where Vr is the Riemannian gradient and N is the unit normal vector to the
medial surface. A single sample is then placed at the center of each patch with
extent (Au, Av) = (1,1) and recursively subdivided until

|1BE Au x BE Av|| < 72 (2)

for some threshold 7, which ensures the sample area of the boundary is suffi-
ciently small on both sides of the medial axis. A sample set S is then constructed
from these samples, containing the tuple (m,r,U) and all its derivatives, where
U is one of the two spoke vectors U*. Each point on the medial axis contributes
two sample values, one for each spoke vector, in order to integrate over both
sides of the medial axis.

Numeric Integration in Medial Coordinates. Damon showed how to rewrite vol-
ume and surface integrals of a medially defined region in terms of medial inte-
grals [26]. We begin with a motivational example: some simple volume integrals
over the object interior (2 for moments up through second order, which we will
use to align a template to the target shape. Given a Borel measurable and
Lebesgue integrable function g : 2 — R,

1
g(m,r,U)é/ glm+t-rU)-det (I —¢-rSpaq) dt (3)

/divz ;ng:/M§~(U~N)dA. (4)

Here M is the double of the medial axis M, indicating that integration is per-
formed over both sides, with A/ chosen to point towards the same side as U.
The term dM = (U - N')dA is the medial measure defined by Damon [26], which
accounts for the failure of U to be orthogonal to M. I is the identity matrix
and Spaq is Damon’s radial shape operator, which measures the rate of change
of U along M. In three dimensions S;,q can be expressed as a 2 X 2 matrix
computed from derivatives of m and r as described in [24]. Then for simple
functions g we can write analytic expressions for g using the mean radial curva-
ture, Hyaq = étraee(srad), and the Gaussian radial curvature, K ,q = det (Sraq):

1 .
For g(z)=1, g=r— 2 Hpoq + §r3Krad . (5)

1
For g(z) =, g=m- (r — 2 Hyq + 37"3Krad>

(6)

1 2 1
+U- (2r2 - §T3Hrad + 4T4Krad> .
1
For g(x) = zal, g=mmT . (r —r°Hpaq + gr Kiad)
2
+ (mUT + UmT) (27"2 - gTSHrad + 47“ Krad) (7)
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The complete volume integrals may now be approximated for any choice of g by

/ng% Z g-AM | AM £ |U - (my, x my)|Audv . (8)
2 (m,r,U)€S
These integrals allow the computation of the volume, center of mass, and second

order moment tensor of a medially-defined object. Surface integrals over the
boundary are even easier. For a Borel measurable function h : B — R,

/hd@:/ﬁdet(l—rsmd) dM | 9)
B M
~ Z h(1—=2rHpaq + 12 Keaq) AM | (10)
(m,r,U)ES

where h(m,r,U) 2 h(m +rU).

2.2 Single-Subject Model Fitting

Before describing the correspondence optimization, this section outlines the fit-
ting process for a single target shape. First, a similarity transform is applied to
the template to align it to the target using its center of mass, volume, and the
eigenvectors of the second order moment tensor to define the translation, scale,
and rotation, respectively. More robust alignment methods are possible, but this
was sufficient for the objects considered in this paper.

We then convert the binary image to a multiscale level-set representation I,
by convolving it with a Gaussian for various choices of ¢ and choosing a level
Ly for each scale that maximizes the volume overlap with the original image.
We deform the template to match the level set at the coarsest scale, and then
successively refine it to match each finer scale. Our objective function is given
by the squared error integrated over the surface using (10):

F7 = Z (Io(m +7U) — £o)* -w; ,  w; = |det (I —rSaq) AM|  (11)
(m,r,U)€eS

We use nonlinear conjugate gradient (CG) optimization, with a quadratic penalty
function to ensure the model is valid—that is, to ensure that the square root
in (1) is real and that no spokes cross inside the object. At points outside the
feasible region, the weight w; is taken to be zero if (1) cannot be evaluated,
and the absolute value in w; handles the case of overfolding. The nonlinear CG
method periodically restarts when the next step fails certain orthogonality con-
straints. We call all the steps between two restarts a macro step and hold S and
w; fixed for its duration. This avoids the need to compute their derivatives and
avoids descent towards the trivial global minimum of a zero-volume (2.

2.3 Correspondence Optimization

In order to optimize the correspondence of a group of medially-defined objects
M) we borrow an idea from recent work on computing unbiased, symmetric

University of Utah Institutional Repository
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atlases [27, 28] and represent the known correspondence via a series of maps ¢,
that project each shape into a common coordinate system. In the absence of
any other prior information, this coordinate system is constructed by Procrustes
aligning the target shapes and mapping each point to the linear average of all
corresponding points. The map is extended to medially defined points (m,r,U)
by projecting m+rU onto the target shape along the U direction, which is normal
to the model boundary. This leads to an objective function for correspondence:

Fh= Y (4mnU) = wi)*-w; . (12)

(m,r,U)ES

Here p; is the average of the medially corresponding points after projection by
¢;, that is, those from the same patch, with the same (u,v) coordinates, in
multiple models. We use the same sampling S for each model to ensure this is
well-defined, continuing to subdivide in all the models so long as any one violates
the threshold in (2). Like w;, we fix p; for the duration of a CG macro step.

In order to avoid interfering with the model fitting process, the deformations
allowed in the correspondence optimization are constructed to be approximately
transverse to it. That is, we define a base model Méj )__taken to be the latest re-
sult of the model fitting optimization—and restrict the motion of control points
so that their corresponding limit points “slide” along it. For small deformations,
within the approximation accuracy of the interpolation, this does not change the
shape of the model. The neighborhood of each limit point on ./\/lgj ) is parameter-
ized using the bilinear map @ given in [29], which is G? and has simple analytic
derivatives. Then the control point values that give the desired limit points are
recovered by solving a linear system. This system is fixed for a given subdivision
surface topology and admits a sparse LU decomposition, whose size is linear in
the number of control points [30], making this extremely efficient.

Optimization then proceeds by trading back and forth between model fitting
and correspondence optimization. This ensures the approximate transversality
holds as the the process nears convergence, since this approximation is not very
accurate for the initial, large step sizes. First a macro step optimizing FYy is taken
for each model, then y; is updated and a macro step optimizing Fé is taken for
each subject j. The two processes do not compete with each other, and so no
weight parameter is needed to trade off between the two. The problem is well
over-constrained for any modest level of subdivision, so an exact match with
the input boundary correspondence will not, in general, be obtained. However,
the result conforms to growth or deformation consistent with the medial model,
even if the input correspondence does not.

3 Results

We applied our method to a population of synthetic ellipsoids and to a collection
of 3D brain objects provided by an ongoing clinical neuroimaging study.
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(c¢) No correspondence optimization (d) With correspondence optimization

Fig. 3. Clusters of corresponding points in the reference coordinate system, both with
and without correspondence optimization enabled. Deformed ellipsoids (top) and left
caudate structures (bottom) are shown. Points with the same color belong to the same
cluster. The wireframe model connects the cluster centers. Enabling correspondence
optimization gives much tighter clusters, especially near the center of the ellipsoid,
where the parameterization is most ambiguous. Significant improvement is also shown
in the tail region of the caudate.

3.1 Ellipsoid data

A simple test population was created from an ellipsoid deformed by a set of 20
diffeomorphisms of the form [31]

T
Vo5, (2,y,2) £ | €% (ycos(Bz) — zsin(fz)) ; (13)
e’ (ysin(Bz) + z cos(Bx)) + ax?

where the «, 3, and v parameters control bending, twisting, and tapering, respec-
tively. These parameters were drawn from normal distributions with standard
deviations 1.5, 1.05, and 2.12, respectively, and the resulting deformation was ap-
plied to a standard ellipsoid with axis lengths of (1/2,1/3,1/4) centered around
the origin. The result was converted to a 128 x 128 x 128 binary image.

For this data set, ground-truth correspondence is known. Therefore ¢; is set
to &I/O; 1 By Although this map does describe the deformation applied to obtain
the target object, it may not be physically realistic, since one would not, for ex-
ample, expect two points on the top and bottom of an ellipsoid with the same x
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coordinate to still have the same = coordinate after bending it. We constructed a
template by averaging models fit without correspondence optimization, and fit it
to the population using 10 scale levels for o with an iteration limit of Ky, = 200
macro steps. At each level, the subdivision threshold 7 was set to %O’. Each itera-
tion comprised one macro step optimizing the binary image match, £y, followed
by one macro step optimizing the correspondence match for each subject, Fé
The optimization only stopped when one of the stopping criteria for CG was
encountered for every model, which in this case meant it proceeded to the it-
eration limit at every scale. The average Dice coefficient of the volume overlap
(also computed with a medial integral) was Vpic. = 96.88%, which was actually
slightly higher than the 96.72% obtained without correspondence optimization.
The continuing evolution of the correspondence optimization even after the im-
age match optimization has converged for a particular subject likely gives it the
chance to escape a local minimum and accounts for this small improvement.

In order to visually evaluate how well the surface correspondence was main-
tained by the medial model, the top row of Fig. 3 shows the endpoints of the
spokes associated with each control point mapped into the reference coordinate
system via ¢; for the models fit both with and without correspondence optimiza-
tion enabled. When correspondence optimization is enabled, these points form
much tighter clusters, especially towards the center of the ellipsoid, where the ra-
dius changes more slowly. This is precisely the place where the parameterization
is most ambiguous, allowing the correspondence match to produce tight clusters
without sacrificing fit quality. The clusters on the ends are not as tight, but for
the most part they are still well-separated, unlike their counterparts obtained
by fitting models individually.

3.2 Caudate data

Models were also fit to real-world data from an ongoing clinical longitudinal pe-
diatric autism study [32]. Ten subjects each from the autistic and typical groups
were chosen and their segmented MRI scans from age four used to test the
correspondence optimization. Volumetric segmentations of voxel objects were
transformed into surface mesh models and parametrized by SPHARMs [33],
with boundary correspondence given by aligning their first-order ellipsoids. This
could be replaced by any other correspondence established via analysis of surface
geometry or by additional measurements reflecting anatomical or functional ge-
ometry. The SPHARM surface was then converted to a triangle mesh and ¢; was
chosen to map to their average after Procrustes alignment. Ray-triangle inter-
sections computed with the algorithm in [34] were used to project m + rU onto
the SPHARM surface, and OBB trees [35] were used to reduced the number of
triangles that needed to be tested. To speed up these tests even further, the most
recent triangle intersecting each ray was cached, and the OBB tree was searched
only if the intersection test against the cached triangle failed. The same scales,
iteration limits, and subdivision thresholds were used during optimization as for
the ellipse data. The results in the bottom row of Fig. 3 are even more striking
than for the ellipse data, especially in the tail region.
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4 Conclusion

Sect. 2.1 developed medial integrals as a fundamental tool for taking advantage
of the link between the medial axis and the boundary. This allows properties
of the boundary to be expressed on the boundary but be evaluated in medial
coordinates. This gives continuous medial models advantages of both representa-
tions. Although Damon introduced the concept, this work is the first application
to demonstrate that they are easily computable and to apply them to com-
putational problems. These medial integrals are applied for computing volume
overlap to evaluate goodness-of-fit and for computing second-order moments to
align models to a common position, orientation and scale, demonstrating the way
medial integrals can be used to compute basic object properties. Most impor-
tant is the demonstration that these properties can be computed without first
converting to a boundary representation, avoiding the additional complexity and
approximation error such a conversion would involve.

This paper describes a new correspondence optimization method that works
in tandem with the model fitting process to produce a group of models with a
common parameterization. Key is a fitting process of a continuous medial model
to a population of objects. We show how specific knowledge of correspondence
can be incorporated into the model fitting process. This eliminates excess vari-
ability in the parameterization of the objects which could mask real statistical
effects of the shape change. The correspondence match optimization introduced
does not sacrifice the quality of the fit. Instead, it operates transversely to the
fitting process up to the tolerance of the model, requiring no tuning parameter
to trade off between the two.

The procedure described here serves as a good example of the reasons to use a
continuous medial representation over a discrete one and is a non-trivial example
of how the link between the medial axis and the boundary can be exploited to
give a medial model the advantages of the latter without sacrificing those of the
former. The sliding process used to remove ambiguities in the parameterization
of the axis would not be possible with a discrete representation. Although the
amount of variability this process eliminates is visually remarkable, little has
been done to evaluate the quantitative effect this has on the power of statistical
tests, and more work needs to be done in this area.
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