129,778 research outputs found

    Tomographic Study of Internal Erosion of Particle Flows in Porous Media

    Full text link
    In particle-laden flows through porous media, porosity and permeability are significantly affected by the deposition and erosion of particles. Experiments show that the permeability evolution of a porous medium with respect to a particle suspension is not smooth, but rather exhibits significant jumps followed by longer periods of continuous permeability decrease. Their origin seems to be related to internal flow path reorganization by avalanches of deposited material due to erosion inside the porous medium. We apply neutron tomography to resolve the spatio-temporal evolution of the pore space during clogging and unclogging to prove the hypothesis of flow path reorganization behind the permeability jumps. This mechanistic understanding of clogging phenomena is relevant for a number of applications from oil production to filters or suffosion as the mechanisms behind sinkhole formation.Comment: 18 pages, 9 figure

    Fast MCMC sampling for Markov jump processes and extensions

    Full text link
    Markov jump processes (or continuous-time Markov chains) are a simple and important class of continuous-time dynamical systems. In this paper, we tackle the problem of simulating from the posterior distribution over paths in these models, given partial and noisy observations. Our approach is an auxiliary variable Gibbs sampler, and is based on the idea of uniformization. This sets up a Markov chain over paths by alternately sampling a finite set of virtual jump times given the current path and then sampling a new path given the set of extant and virtual jump times using a standard hidden Markov model forward filtering-backward sampling algorithm. Our method is exact and does not involve approximations like time-discretization. We demonstrate how our sampler extends naturally to MJP-based models like Markov-modulated Poisson processes and continuous-time Bayesian networks and show significant computational benefits over state-of-the-art MCMC samplers for these models.Comment: Accepted at the Journal of Machine Learning Research (JMLR

    Moment-Based Variational Inference for Markov Jump Processes

    Full text link
    We propose moment-based variational inference as a flexible framework for approximate smoothing of latent Markov jump processes. The main ingredient of our approach is to partition the set of all transitions of the latent process into classes. This allows to express the Kullback-Leibler divergence between the approximate and the exact posterior process in terms of a set of moment functions that arise naturally from the chosen partition. To illustrate possible choices of the partition, we consider special classes of jump processes that frequently occur in applications. We then extend the results to parameter inference and demonstrate the method on several examples.Comment: Accepted by the 36th International Conference on Machine Learning (ICML 2019

    Numerical modeling of semisolid flow under processing conditions

    Get PDF
    During the industrial process of Semisolid Forming (or Thixoforming) of alloy slurries, typically the operation of die filling takes around 0.1s. During this time period the alloy slug is transformed from a solid-like structure capable of maintaining its shape, into a liquid-like slurry able to fill a complex die cavity: this involves a decrease in viscosity of some 6 orders of magnitude. Many attempts to measure thixotropic breakdown experimentally in alloy slurries have relied on the use of concentric cylindrical viscometers in which viscosity changes have been followed after shear rate changes over times above 1s to in excess of 1000s, which have little relevance to actual processing conditions and therefore to modeling of flow in industrial practice. The present paper is an attempt to abstract thixotropic breakdown rates from rapid compression tests between parallel plates moving together at velocities of around 1m/s, similar to industrial conditions. From this analysis, a model of slurry flow has been developed in which rapid thixotropic breakdown of the slurry occurs at high shear rates
    • …
    corecore